A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS
ABSTRACT In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed b...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-01, Vol.834 (2), p.133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | The Astrophysical journal |
container_volume | 834 |
creator | Lemerle, Alexandre Charbonneau, Paul |
description | ABSTRACT In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events. |
doi_str_mv | 10.3847/1538-4357/834/2/133 |
format | Article |
fullrecord | <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22661377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apjaa4d17</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2773-a9789529c7e17da8959fc511c1ecf26a535f49983a85206339e7fa3e4bdf529b3</originalsourceid><addsrcrecordid>eNp9kM9Og0AQxjdGE2v1Cbxs4pnC7gDLHilsWyJlTVsSPW3odok0WgzUg0_iA_liLql69DT_vm8m80PolngTiHzmkgAix4eAuRH4LnUJwBka_XXP0cjzPN8JgT1eoqu-3w8l5XyEyhgnsnzIRYop_vrENMXTeJrI5N7JRTZfbGSB1zKPVzh9KuKlxEuZinyCs2yCV2ImVqJIxO_MCstNJov1Nbqoq5fe3PzEMSpnYpMsnFzOsyTOHU0ZA6fiLOIB5ZoZwnaVzXmtA0I0MbqmYRVAUPucR1BFAfVCAG5YXYHxt7va2rYwRnenvW1_bFSvm6PRz7o9HIw-KkrDkIC9M0ZwUumu7fvO1Oqta16r7kMRTw381EBKDaSU5aeosvysyz25mvZN7dv37mA_-dfxDU_iaD0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS</title><source>Institute of Physics Open Access Journal Titles</source><creator>Lemerle, Alexandre ; Charbonneau, Paul</creator><creatorcontrib>Lemerle, Alexandre ; Charbonneau, Paul</creatorcontrib><description>ABSTRACT In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/834/2/133</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ALGORITHMS ; AMPLITUDES ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; AXIAL SYMMETRY ; CORRELATIONS ; COUPLING ; DIPOLES ; dynamo ; FLUCTUATIONS ; MAGNETIC FIELDS ; MATHEMATICAL SOLUTIONS ; PHOTOSPHERE ; REGENERATION ; SOLAR CYCLE ; SOURCE TERMS ; SPATIAL DISTRIBUTION ; SUN ; Sun: activity ; Sun: interior ; Sun: magnetic fields ; Sun: photosphere ; SUNSPOTS ; SURFACES</subject><ispartof>The Astrophysical journal, 2017-01, Vol.834 (2), p.133</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2773-a9789529c7e17da8959fc511c1ecf26a535f49983a85206339e7fa3e4bdf529b3</citedby><cites>FETCH-LOGICAL-c2773-a9789529c7e17da8959fc511c1ecf26a535f49983a85206339e7fa3e4bdf529b3</cites><orcidid>0000-0001-8314-4007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/834/2/133/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/834/2/133$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22661377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemerle, Alexandre</creatorcontrib><creatorcontrib>Charbonneau, Paul</creatorcontrib><title>A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.</description><subject>ALGORITHMS</subject><subject>AMPLITUDES</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>AXIAL SYMMETRY</subject><subject>CORRELATIONS</subject><subject>COUPLING</subject><subject>DIPOLES</subject><subject>dynamo</subject><subject>FLUCTUATIONS</subject><subject>MAGNETIC FIELDS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>PHOTOSPHERE</subject><subject>REGENERATION</subject><subject>SOLAR CYCLE</subject><subject>SOURCE TERMS</subject><subject>SPATIAL DISTRIBUTION</subject><subject>SUN</subject><subject>Sun: activity</subject><subject>Sun: interior</subject><subject>Sun: magnetic fields</subject><subject>Sun: photosphere</subject><subject>SUNSPOTS</subject><subject>SURFACES</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Og0AQxjdGE2v1Cbxs4pnC7gDLHilsWyJlTVsSPW3odok0WgzUg0_iA_liLql69DT_vm8m80PolngTiHzmkgAix4eAuRH4LnUJwBka_XXP0cjzPN8JgT1eoqu-3w8l5XyEyhgnsnzIRYop_vrENMXTeJrI5N7JRTZfbGSB1zKPVzh9KuKlxEuZinyCs2yCV2ImVqJIxO_MCstNJov1Nbqoq5fe3PzEMSpnYpMsnFzOsyTOHU0ZA6fiLOIB5ZoZwnaVzXmtA0I0MbqmYRVAUPucR1BFAfVCAG5YXYHxt7va2rYwRnenvW1_bFSvm6PRz7o9HIw-KkrDkIC9M0ZwUumu7fvO1Oqta16r7kMRTw381EBKDaSU5aeosvysyz25mvZN7dv37mA_-dfxDU_iaD0</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Lemerle, Alexandre</creator><creator>Charbonneau, Paul</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8314-4007</orcidid></search><sort><creationdate>20170110</creationdate><title>A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS</title><author>Lemerle, Alexandre ; Charbonneau, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2773-a9789529c7e17da8959fc511c1ecf26a535f49983a85206339e7fa3e4bdf529b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ALGORITHMS</topic><topic>AMPLITUDES</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>AXIAL SYMMETRY</topic><topic>CORRELATIONS</topic><topic>COUPLING</topic><topic>DIPOLES</topic><topic>dynamo</topic><topic>FLUCTUATIONS</topic><topic>MAGNETIC FIELDS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>PHOTOSPHERE</topic><topic>REGENERATION</topic><topic>SOLAR CYCLE</topic><topic>SOURCE TERMS</topic><topic>SPATIAL DISTRIBUTION</topic><topic>SUN</topic><topic>Sun: activity</topic><topic>Sun: interior</topic><topic>Sun: magnetic fields</topic><topic>Sun: photosphere</topic><topic>SUNSPOTS</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemerle, Alexandre</creatorcontrib><creatorcontrib>Charbonneau, Paul</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lemerle, Alexandre</au><au>Charbonneau, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>834</volume><issue>2</issue><spage>133</spage><pages>133-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/834/2/133</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8314-4007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-01, Vol.834 (2), p.133 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22661377 |
source | Institute of Physics Open Access Journal Titles |
subjects | ALGORITHMS AMPLITUDES ASTROPHYSICS, COSMOLOGY AND ASTRONOMY AXIAL SYMMETRY CORRELATIONS COUPLING DIPOLES dynamo FLUCTUATIONS MAGNETIC FIELDS MATHEMATICAL SOLUTIONS PHOTOSPHERE REGENERATION SOLAR CYCLE SOURCE TERMS SPATIAL DISTRIBUTION SUN Sun: activity Sun: interior Sun: magnetic fields Sun: photosphere SUNSPOTS SURFACES |
title | A COUPLED 2 × 2D BABCOCK-LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COUPLED%202%20%C3%97%202D%20BABCOCK-LEIGHTON%20SOLAR%20DYNAMO%20MODEL.%20II.%20REFERENCE%20DYNAMO%20SOLUTIONS&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lemerle,%20Alexandre&rft.date=2017-01-10&rft.volume=834&rft.issue=2&rft.spage=133&rft.pages=133-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/834/2/133&rft_dat=%3Ciop_O3W%3Eapjaa4d17%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |