THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY

ABSTRACT Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of 0.1 m s−1 and fragmentation at velocities 1 m s−1. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-01, Vol.834 (2), p.145
Hauptverfasser: Syed, M. Bukhari, Blum, J., Jansson, K. Wahlberg, Johansen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 145
container_title The Astrophysical journal
container_volume 834
creator Syed, M. Bukhari
Blum, J.
Jansson, K. Wahlberg
Johansen, A.
description ABSTRACT Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of 0.1 m s−1 and fragmentation at velocities 1 m s−1. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5-8.7 m s−1, at low atmospheric pressure of ∼10−3 mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.
doi_str_mv 10.3847/1538-4357/834/2/145
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22661359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365847771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a548t-8912f7aa5ff304e3a56445ef91547ae9a34f5c347368c7c209e317c0fed448c83</originalsourceid><addsrcrecordid>eNp9kV1v0zAUhi0EEmXjF3Bjies08VdsX2bD3SKlTekyaVwdeZ4tMo0mxKkQ_x53RdvdLo789Z7Hth6EvpBiyRSXORFMZZwJmSvGc5oTLt6hxcvue7QoioJnJZN3H9GnGB-PS6r1An3vrg3etY3B7QpvzcVFmq121dXabLqqq9sNrjd421Qb05mbel01eNXu1s8nS1wvsbnbml39nG7wTXf77cc5-hDsU_Sf_49n6HZlusvrrGmv6suqyazgas6UJjRIa0UIrOCeWVFyLnzQRHBpvbaMB-EYl6xUTjpaaM-IdEXwD5wrp9gZak7c-MePh3sYp_6Xnf7CYHt4Ooyp7lNB9ECUs5oHB9RrBYluQWv5ADLd7xO4DMwm3NcTbohzD9H1s3c_3bDfezcDpWVJmNCvqXEafh98nOFxOEz79E-grBTJhZQkpdgp5aYhxsmHl8eRAo7C4KgGjmogCQMKSVjqyk9d_TC-Yt_q-AdaWo1v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365847771</pqid></control><display><type>article</type><title>THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY</title><source>Institute of Physics Open Access Journal Titles</source><creator>Syed, M. Bukhari ; Blum, J. ; Jansson, K. Wahlberg ; Johansen, A.</creator><creatorcontrib>Syed, M. Bukhari ; Blum, J. ; Jansson, K. Wahlberg ; Johansen, A.</creatorcontrib><description>ABSTRACT Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of 0.1 m s−1 and fragmentation at velocities 1 m s−1. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5-8.7 m s−1, at low atmospheric pressure of ∼10−3 mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/834/2/145</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aggregates ; Astronomi, astrofysik och kosmologi ; Astronomy, Astrophysics and Cosmology ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmospheric models ; Atmospheric pressure ; Collapse ; Collisions ; COMETS ; comets: general ; CONCENTRATION RATIO ; Dust ; ELEMENT ABUNDANCE ; FRAGMENTATION ; Fysik ; Gravitation ; GRAVITATIONAL COLLAPSE ; IMAGE PROCESSING ; Laboratory experiments ; MASS DISTRIBUTION ; Mass ratios ; MASS TRANSFER ; methods: laboratory ; Natural Sciences ; Naturvetenskap ; Physical Sciences ; Planet formation ; PLANETS ; planets and satellites: formation ; POROSITY ; Projectiles ; protoplanetary disks ; PROTOPLANETS ; SATELLITES ; Size distribution ; techniques: image processing ; VELOCITY</subject><ispartof>The Astrophysical journal, 2017-01, Vol.834 (2), p.145</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a548t-8912f7aa5ff304e3a56445ef91547ae9a34f5c347368c7c209e317c0fed448c83</citedby><cites>FETCH-LOGICAL-a548t-8912f7aa5ff304e3a56445ef91547ae9a34f5c347368c7c209e317c0fed448c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/834/2/145/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,782,786,887,27933,27934,38899,53876</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/834/2/145$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22661359$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/18ca94fc-2e98-47aa-997d-7f7ae2096f3a$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Syed, M. Bukhari</creatorcontrib><creatorcontrib>Blum, J.</creatorcontrib><creatorcontrib>Jansson, K. Wahlberg</creatorcontrib><creatorcontrib>Johansen, A.</creatorcontrib><title>THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of 0.1 m s−1 and fragmentation at velocities 1 m s−1. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5-8.7 m s−1, at low atmospheric pressure of ∼10−3 mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.</description><subject>Aggregates</subject><subject>Astronomi, astrofysik och kosmologi</subject><subject>Astronomy, Astrophysics and Cosmology</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Collapse</subject><subject>Collisions</subject><subject>COMETS</subject><subject>comets: general</subject><subject>CONCENTRATION RATIO</subject><subject>Dust</subject><subject>ELEMENT ABUNDANCE</subject><subject>FRAGMENTATION</subject><subject>Fysik</subject><subject>Gravitation</subject><subject>GRAVITATIONAL COLLAPSE</subject><subject>IMAGE PROCESSING</subject><subject>Laboratory experiments</subject><subject>MASS DISTRIBUTION</subject><subject>Mass ratios</subject><subject>MASS TRANSFER</subject><subject>methods: laboratory</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Sciences</subject><subject>Planet formation</subject><subject>PLANETS</subject><subject>planets and satellites: formation</subject><subject>POROSITY</subject><subject>Projectiles</subject><subject>protoplanetary disks</subject><subject>PROTOPLANETS</subject><subject>SATELLITES</subject><subject>Size distribution</subject><subject>techniques: image processing</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v0zAUhi0EEmXjF3Bjies08VdsX2bD3SKlTekyaVwdeZ4tMo0mxKkQ_x53RdvdLo789Z7Hth6EvpBiyRSXORFMZZwJmSvGc5oTLt6hxcvue7QoioJnJZN3H9GnGB-PS6r1An3vrg3etY3B7QpvzcVFmq121dXabLqqq9sNrjd421Qb05mbel01eNXu1s8nS1wvsbnbml39nG7wTXf77cc5-hDsU_Sf_49n6HZlusvrrGmv6suqyazgas6UJjRIa0UIrOCeWVFyLnzQRHBpvbaMB-EYl6xUTjpaaM-IdEXwD5wrp9gZak7c-MePh3sYp_6Xnf7CYHt4Ooyp7lNB9ECUs5oHB9RrBYluQWv5ADLd7xO4DMwm3NcTbohzD9H1s3c_3bDfezcDpWVJmNCvqXEafh98nOFxOEz79E-grBTJhZQkpdgp5aYhxsmHl8eRAo7C4KgGjmogCQMKSVjqyk9d_TC-Yt_q-AdaWo1v</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Syed, M. Bukhari</creator><creator>Blum, J.</creator><creator>Jansson, K. Wahlberg</creator><creator>Johansen, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20170110</creationdate><title>THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY</title><author>Syed, M. Bukhari ; Blum, J. ; Jansson, K. Wahlberg ; Johansen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a548t-8912f7aa5ff304e3a56445ef91547ae9a34f5c347368c7c209e317c0fed448c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aggregates</topic><topic>Astronomi, astrofysik och kosmologi</topic><topic>Astronomy, Astrophysics and Cosmology</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Collapse</topic><topic>Collisions</topic><topic>COMETS</topic><topic>comets: general</topic><topic>CONCENTRATION RATIO</topic><topic>Dust</topic><topic>ELEMENT ABUNDANCE</topic><topic>FRAGMENTATION</topic><topic>Fysik</topic><topic>Gravitation</topic><topic>GRAVITATIONAL COLLAPSE</topic><topic>IMAGE PROCESSING</topic><topic>Laboratory experiments</topic><topic>MASS DISTRIBUTION</topic><topic>Mass ratios</topic><topic>MASS TRANSFER</topic><topic>methods: laboratory</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Sciences</topic><topic>Planet formation</topic><topic>PLANETS</topic><topic>planets and satellites: formation</topic><topic>POROSITY</topic><topic>Projectiles</topic><topic>protoplanetary disks</topic><topic>PROTOPLANETS</topic><topic>SATELLITES</topic><topic>Size distribution</topic><topic>techniques: image processing</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syed, M. Bukhari</creatorcontrib><creatorcontrib>Blum, J.</creatorcontrib><creatorcontrib>Jansson, K. Wahlberg</creatorcontrib><creatorcontrib>Johansen, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syed, M. Bukhari</au><au>Blum, J.</au><au>Jansson, K. Wahlberg</au><au>Johansen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>834</volume><issue>2</issue><spage>145</spage><pages>145-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of 0.1 m s−1 and fragmentation at velocities 1 m s−1. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5-8.7 m s−1, at low atmospheric pressure of ∼10−3 mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/834/2/145</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-01, Vol.834 (2), p.145
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22661359
source Institute of Physics Open Access Journal Titles
subjects Aggregates
Astronomi, astrofysik och kosmologi
Astronomy, Astrophysics and Cosmology
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Atmospheric models
Atmospheric pressure
Collapse
Collisions
COMETS
comets: general
CONCENTRATION RATIO
Dust
ELEMENT ABUNDANCE
FRAGMENTATION
Fysik
Gravitation
GRAVITATIONAL COLLAPSE
IMAGE PROCESSING
Laboratory experiments
MASS DISTRIBUTION
Mass ratios
MASS TRANSFER
methods: laboratory
Natural Sciences
Naturvetenskap
Physical Sciences
Planet formation
PLANETS
planets and satellites: formation
POROSITY
Projectiles
protoplanetary disks
PROTOPLANETS
SATELLITES
Size distribution
techniques: image processing
VELOCITY
title THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20ROLE%20OF%20PEBBLE%20FRAGMENTATION%20IN%20PLANETESIMAL%20FORMATION.%20I.%20EXPERIMENTAL%20STUDY&rft.jtitle=The%20Astrophysical%20journal&rft.au=Syed,%20M.%20Bukhari&rft.date=2017-01-10&rft.volume=834&rft.issue=2&rft.spage=145&rft.pages=145-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/834/2/145&rft_dat=%3Cproquest_O3W%3E2365847771%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365847771&rft_id=info:pmid/&rfr_iscdi=true