On the Magnetic Protection of the Atmosphere of Proxima Centauri b
The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2017-07, Vol.844 (1), p.L13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | L13 |
container_title | Astrophysical journal. Letters |
container_volume | 844 |
creator | Garcia-Sage, K. Glocer, A. Drake, J. J. Gronoff, G. Cohen, O. |
description | The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth. |
doi_str_mv | 10.3847/2041-8213/aa7eca |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22654429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365631019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt7Fy4GBFfW5j2ZZS2-oFIXug6ZNLFT2mRMUtB_b8aRdiOuEu757snJAeAcwRsiaDnGkKKRwIiMlSqNVgdgsBsd7u6QHYOTGFcQYsiRGIDbuSvS0hTP6t2Z1OjiJfhkdGq8K7z9kSZp42O7NMF0k6x_NhtVTI1Lahuaoj4FR1atozn7PYfg7f7udfo4ms0fnqaT2UjTiqeRQKW1lVYG11oYwgRBoqQ1K5FVFTaoFkwxXmNFhMJ4US0MFZxgik1tRQk5GYLL3tfH1Miom5xzqb1zOa7EmDNKcbWn2uA_tiYmufLb4HIwiQlnnCCIOgr2lA4-xmCsbEP-VfiSCMquT9kVJrvyZN9nXrnoV5yKSroUsiFEAkJIWNmlu-7lxrf7J_9xu_oDV-1qLQWlEslZZtuFJd_zeYqr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365631019</pqid></control><display><type>article</type><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><source>IOP Publishing Free Content</source><creator>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</creator><creatorcontrib>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</creatorcontrib><description>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aa7eca</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmosphere ; Atmospheric evolution ; CAPACITY ; Circumstellar habitable zone ; Earth ; EVOLUTION ; Extrasolar planets ; Geomagnetic activity ; Geomagnetism ; Habitability ; Ionizing radiation ; IONIZING RADIATIONS ; Liquid surfaces ; Lunar And Planetary Science And Exploration ; MAGNETIC FIELDS ; Magnetic poles ; MASS ; Oceans ; ORBITS ; planet-star interactions ; PLANETARY ATMOSPHERES ; Planetary evolution ; Planetary magnetic fields ; Planetary orbits ; planetary systems ; PLANETS ; planets and satellites: atmospheres ; planets and satellites: magnetic fields ; planets and satellites: terrestrial planets ; Polar wind ; Radiation ; Radiation measurement ; Red dwarf stars ; SATELLITE ATMOSPHERES ; SATELLITES ; STARS ; stars: low-mass ; STELLAR WINDS ; STRIPPING ; Surface water ; Terrestrial planets ; Volatile compounds</subject><ispartof>Astrophysical journal. Letters, 2017-07, Vol.844 (1), p.L13</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</citedby><cites>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</cites><orcidid>0000-0003-3721-0215 ; 0000-0001-6398-8755 ; 0000-0002-0331-7076 ; 0000-0002-0210-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aa7eca/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aa7eca$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22654429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Sage, K.</creatorcontrib><creatorcontrib>Glocer, A.</creatorcontrib><creatorcontrib>Drake, J. J.</creatorcontrib><creatorcontrib>Gronoff, G.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmosphere</subject><subject>Atmospheric evolution</subject><subject>CAPACITY</subject><subject>Circumstellar habitable zone</subject><subject>Earth</subject><subject>EVOLUTION</subject><subject>Extrasolar planets</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Habitability</subject><subject>Ionizing radiation</subject><subject>IONIZING RADIATIONS</subject><subject>Liquid surfaces</subject><subject>Lunar And Planetary Science And Exploration</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic poles</subject><subject>MASS</subject><subject>Oceans</subject><subject>ORBITS</subject><subject>planet-star interactions</subject><subject>PLANETARY ATMOSPHERES</subject><subject>Planetary evolution</subject><subject>Planetary magnetic fields</subject><subject>Planetary orbits</subject><subject>planetary systems</subject><subject>PLANETS</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: magnetic fields</subject><subject>planets and satellites: terrestrial planets</subject><subject>Polar wind</subject><subject>Radiation</subject><subject>Radiation measurement</subject><subject>Red dwarf stars</subject><subject>SATELLITE ATMOSPHERES</subject><subject>SATELLITES</subject><subject>STARS</subject><subject>stars: low-mass</subject><subject>STELLAR WINDS</subject><subject>STRIPPING</subject><subject>Surface water</subject><subject>Terrestrial planets</subject><subject>Volatile compounds</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kEtLAzEUhYMoWKt7Fy4GBFfW5j2ZZS2-oFIXug6ZNLFT2mRMUtB_b8aRdiOuEu757snJAeAcwRsiaDnGkKKRwIiMlSqNVgdgsBsd7u6QHYOTGFcQYsiRGIDbuSvS0hTP6t2Z1OjiJfhkdGq8K7z9kSZp42O7NMF0k6x_NhtVTI1Lahuaoj4FR1atozn7PYfg7f7udfo4ms0fnqaT2UjTiqeRQKW1lVYG11oYwgRBoqQ1K5FVFTaoFkwxXmNFhMJ4US0MFZxgik1tRQk5GYLL3tfH1Miom5xzqb1zOa7EmDNKcbWn2uA_tiYmufLb4HIwiQlnnCCIOgr2lA4-xmCsbEP-VfiSCMquT9kVJrvyZN9nXrnoV5yKSroUsiFEAkJIWNmlu-7lxrf7J_9xu_oDV-1qLQWlEslZZtuFJd_zeYqr</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Garcia-Sage, K.</creator><creator>Glocer, A.</creator><creator>Drake, J. J.</creator><creator>Gronoff, G.</creator><creator>Cohen, O.</creator><general>The American Astronomical Society</general><general>American Astonomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3721-0215</orcidid><orcidid>https://orcid.org/0000-0001-6398-8755</orcidid><orcidid>https://orcid.org/0000-0002-0331-7076</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid></search><sort><creationdate>20170720</creationdate><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><author>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmosphere</topic><topic>Atmospheric evolution</topic><topic>CAPACITY</topic><topic>Circumstellar habitable zone</topic><topic>Earth</topic><topic>EVOLUTION</topic><topic>Extrasolar planets</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Habitability</topic><topic>Ionizing radiation</topic><topic>IONIZING RADIATIONS</topic><topic>Liquid surfaces</topic><topic>Lunar And Planetary Science And Exploration</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic poles</topic><topic>MASS</topic><topic>Oceans</topic><topic>ORBITS</topic><topic>planet-star interactions</topic><topic>PLANETARY ATMOSPHERES</topic><topic>Planetary evolution</topic><topic>Planetary magnetic fields</topic><topic>Planetary orbits</topic><topic>planetary systems</topic><topic>PLANETS</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: magnetic fields</topic><topic>planets and satellites: terrestrial planets</topic><topic>Polar wind</topic><topic>Radiation</topic><topic>Radiation measurement</topic><topic>Red dwarf stars</topic><topic>SATELLITE ATMOSPHERES</topic><topic>SATELLITES</topic><topic>STARS</topic><topic>stars: low-mass</topic><topic>STELLAR WINDS</topic><topic>STRIPPING</topic><topic>Surface water</topic><topic>Terrestrial planets</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Sage, K.</creatorcontrib><creatorcontrib>Glocer, A.</creatorcontrib><creatorcontrib>Drake, J. J.</creatorcontrib><creatorcontrib>Gronoff, G.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Sage, K.</au><au>Glocer, A.</au><au>Drake, J. J.</au><au>Gronoff, G.</au><au>Cohen, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2017-07-20</date><risdate>2017</risdate><volume>844</volume><issue>1</issue><spage>L13</spage><pages>L13-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aa7eca</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3721-0215</orcidid><orcidid>https://orcid.org/0000-0001-6398-8755</orcidid><orcidid>https://orcid.org/0000-0002-0331-7076</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2017-07, Vol.844 (1), p.L13 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_osti_scitechconnect_22654429 |
source | IOP Publishing Free Content |
subjects | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Atmosphere Atmospheric evolution CAPACITY Circumstellar habitable zone Earth EVOLUTION Extrasolar planets Geomagnetic activity Geomagnetism Habitability Ionizing radiation IONIZING RADIATIONS Liquid surfaces Lunar And Planetary Science And Exploration MAGNETIC FIELDS Magnetic poles MASS Oceans ORBITS planet-star interactions PLANETARY ATMOSPHERES Planetary evolution Planetary magnetic fields Planetary orbits planetary systems PLANETS planets and satellites: atmospheres planets and satellites: magnetic fields planets and satellites: terrestrial planets Polar wind Radiation Radiation measurement Red dwarf stars SATELLITE ATMOSPHERES SATELLITES STARS stars: low-mass STELLAR WINDS STRIPPING Surface water Terrestrial planets Volatile compounds |
title | On the Magnetic Protection of the Atmosphere of Proxima Centauri b |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Magnetic%20Protection%20of%20the%20Atmosphere%20of%20Proxima%20Centauri%20b&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Garcia-Sage,%20K.&rft.date=2017-07-20&rft.volume=844&rft.issue=1&rft.spage=L13&rft.pages=L13-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aa7eca&rft_dat=%3Cproquest_O3W%3E2365631019%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365631019&rft_id=info:pmid/&rfr_iscdi=true |