On the Magnetic Protection of the Atmosphere of Proxima Centauri b

The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2017-07, Vol.844 (1), p.L13
Hauptverfasser: Garcia-Sage, K., Glocer, A., Drake, J. J., Gronoff, G., Cohen, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L13
container_title Astrophysical journal. Letters
container_volume 844
creator Garcia-Sage, K.
Glocer, A.
Drake, J. J.
Gronoff, G.
Cohen, O.
description The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.
doi_str_mv 10.3847/2041-8213/aa7eca
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22654429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365631019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt7Fy4GBFfW5j2ZZS2-oFIXug6ZNLFT2mRMUtB_b8aRdiOuEu757snJAeAcwRsiaDnGkKKRwIiMlSqNVgdgsBsd7u6QHYOTGFcQYsiRGIDbuSvS0hTP6t2Z1OjiJfhkdGq8K7z9kSZp42O7NMF0k6x_NhtVTI1Lahuaoj4FR1atozn7PYfg7f7udfo4ms0fnqaT2UjTiqeRQKW1lVYG11oYwgRBoqQ1K5FVFTaoFkwxXmNFhMJ4US0MFZxgik1tRQk5GYLL3tfH1Miom5xzqb1zOa7EmDNKcbWn2uA_tiYmufLb4HIwiQlnnCCIOgr2lA4-xmCsbEP-VfiSCMquT9kVJrvyZN9nXrnoV5yKSroUsiFEAkJIWNmlu-7lxrf7J_9xu_oDV-1qLQWlEslZZtuFJd_zeYqr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365631019</pqid></control><display><type>article</type><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><source>IOP Publishing Free Content</source><creator>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</creator><creatorcontrib>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</creatorcontrib><description>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aa7eca</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmosphere ; Atmospheric evolution ; CAPACITY ; Circumstellar habitable zone ; Earth ; EVOLUTION ; Extrasolar planets ; Geomagnetic activity ; Geomagnetism ; Habitability ; Ionizing radiation ; IONIZING RADIATIONS ; Liquid surfaces ; Lunar And Planetary Science And Exploration ; MAGNETIC FIELDS ; Magnetic poles ; MASS ; Oceans ; ORBITS ; planet-star interactions ; PLANETARY ATMOSPHERES ; Planetary evolution ; Planetary magnetic fields ; Planetary orbits ; planetary systems ; PLANETS ; planets and satellites: atmospheres ; planets and satellites: magnetic fields ; planets and satellites: terrestrial planets ; Polar wind ; Radiation ; Radiation measurement ; Red dwarf stars ; SATELLITE ATMOSPHERES ; SATELLITES ; STARS ; stars: low-mass ; STELLAR WINDS ; STRIPPING ; Surface water ; Terrestrial planets ; Volatile compounds</subject><ispartof>Astrophysical journal. Letters, 2017-07, Vol.844 (1), p.L13</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</citedby><cites>FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</cites><orcidid>0000-0003-3721-0215 ; 0000-0001-6398-8755 ; 0000-0002-0331-7076 ; 0000-0002-0210-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aa7eca/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aa7eca$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22654429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Sage, K.</creatorcontrib><creatorcontrib>Glocer, A.</creatorcontrib><creatorcontrib>Drake, J. J.</creatorcontrib><creatorcontrib>Gronoff, G.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmosphere</subject><subject>Atmospheric evolution</subject><subject>CAPACITY</subject><subject>Circumstellar habitable zone</subject><subject>Earth</subject><subject>EVOLUTION</subject><subject>Extrasolar planets</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Habitability</subject><subject>Ionizing radiation</subject><subject>IONIZING RADIATIONS</subject><subject>Liquid surfaces</subject><subject>Lunar And Planetary Science And Exploration</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic poles</subject><subject>MASS</subject><subject>Oceans</subject><subject>ORBITS</subject><subject>planet-star interactions</subject><subject>PLANETARY ATMOSPHERES</subject><subject>Planetary evolution</subject><subject>Planetary magnetic fields</subject><subject>Planetary orbits</subject><subject>planetary systems</subject><subject>PLANETS</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: magnetic fields</subject><subject>planets and satellites: terrestrial planets</subject><subject>Polar wind</subject><subject>Radiation</subject><subject>Radiation measurement</subject><subject>Red dwarf stars</subject><subject>SATELLITE ATMOSPHERES</subject><subject>SATELLITES</subject><subject>STARS</subject><subject>stars: low-mass</subject><subject>STELLAR WINDS</subject><subject>STRIPPING</subject><subject>Surface water</subject><subject>Terrestrial planets</subject><subject>Volatile compounds</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kEtLAzEUhYMoWKt7Fy4GBFfW5j2ZZS2-oFIXug6ZNLFT2mRMUtB_b8aRdiOuEu757snJAeAcwRsiaDnGkKKRwIiMlSqNVgdgsBsd7u6QHYOTGFcQYsiRGIDbuSvS0hTP6t2Z1OjiJfhkdGq8K7z9kSZp42O7NMF0k6x_NhtVTI1Lahuaoj4FR1atozn7PYfg7f7udfo4ms0fnqaT2UjTiqeRQKW1lVYG11oYwgRBoqQ1K5FVFTaoFkwxXmNFhMJ4US0MFZxgik1tRQk5GYLL3tfH1Miom5xzqb1zOa7EmDNKcbWn2uA_tiYmufLb4HIwiQlnnCCIOgr2lA4-xmCsbEP-VfiSCMquT9kVJrvyZN9nXrnoV5yKSroUsiFEAkJIWNmlu-7lxrf7J_9xu_oDV-1qLQWlEslZZtuFJd_zeYqr</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Garcia-Sage, K.</creator><creator>Glocer, A.</creator><creator>Drake, J. J.</creator><creator>Gronoff, G.</creator><creator>Cohen, O.</creator><general>The American Astronomical Society</general><general>American Astonomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3721-0215</orcidid><orcidid>https://orcid.org/0000-0001-6398-8755</orcidid><orcidid>https://orcid.org/0000-0002-0331-7076</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid></search><sort><creationdate>20170720</creationdate><title>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</title><author>Garcia-Sage, K. ; Glocer, A. ; Drake, J. J. ; Gronoff, G. ; Cohen, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-817ff9cae2bc8e35831874b571fa92e1b85a56b2a38a22d9de4863242ebf87063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmosphere</topic><topic>Atmospheric evolution</topic><topic>CAPACITY</topic><topic>Circumstellar habitable zone</topic><topic>Earth</topic><topic>EVOLUTION</topic><topic>Extrasolar planets</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Habitability</topic><topic>Ionizing radiation</topic><topic>IONIZING RADIATIONS</topic><topic>Liquid surfaces</topic><topic>Lunar And Planetary Science And Exploration</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic poles</topic><topic>MASS</topic><topic>Oceans</topic><topic>ORBITS</topic><topic>planet-star interactions</topic><topic>PLANETARY ATMOSPHERES</topic><topic>Planetary evolution</topic><topic>Planetary magnetic fields</topic><topic>Planetary orbits</topic><topic>planetary systems</topic><topic>PLANETS</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: magnetic fields</topic><topic>planets and satellites: terrestrial planets</topic><topic>Polar wind</topic><topic>Radiation</topic><topic>Radiation measurement</topic><topic>Red dwarf stars</topic><topic>SATELLITE ATMOSPHERES</topic><topic>SATELLITES</topic><topic>STARS</topic><topic>stars: low-mass</topic><topic>STELLAR WINDS</topic><topic>STRIPPING</topic><topic>Surface water</topic><topic>Terrestrial planets</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Sage, K.</creatorcontrib><creatorcontrib>Glocer, A.</creatorcontrib><creatorcontrib>Drake, J. J.</creatorcontrib><creatorcontrib>Gronoff, G.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Sage, K.</au><au>Glocer, A.</au><au>Drake, J. J.</au><au>Gronoff, G.</au><au>Cohen, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Magnetic Protection of the Atmosphere of Proxima Centauri b</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2017-07-20</date><risdate>2017</risdate><volume>844</volume><issue>1</issue><spage>L13</spage><pages>L13-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a "temperate orbit," i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth's early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aa7eca</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3721-0215</orcidid><orcidid>https://orcid.org/0000-0001-6398-8755</orcidid><orcidid>https://orcid.org/0000-0002-0331-7076</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2017-07, Vol.844 (1), p.L13
issn 2041-8205
2041-8213
language eng
recordid cdi_osti_scitechconnect_22654429
source IOP Publishing Free Content
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Atmosphere
Atmospheric evolution
CAPACITY
Circumstellar habitable zone
Earth
EVOLUTION
Extrasolar planets
Geomagnetic activity
Geomagnetism
Habitability
Ionizing radiation
IONIZING RADIATIONS
Liquid surfaces
Lunar And Planetary Science And Exploration
MAGNETIC FIELDS
Magnetic poles
MASS
Oceans
ORBITS
planet-star interactions
PLANETARY ATMOSPHERES
Planetary evolution
Planetary magnetic fields
Planetary orbits
planetary systems
PLANETS
planets and satellites: atmospheres
planets and satellites: magnetic fields
planets and satellites: terrestrial planets
Polar wind
Radiation
Radiation measurement
Red dwarf stars
SATELLITE ATMOSPHERES
SATELLITES
STARS
stars: low-mass
STELLAR WINDS
STRIPPING
Surface water
Terrestrial planets
Volatile compounds
title On the Magnetic Protection of the Atmosphere of Proxima Centauri b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Magnetic%20Protection%20of%20the%20Atmosphere%20of%20Proxima%20Centauri%20b&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Garcia-Sage,%20K.&rft.date=2017-07-20&rft.volume=844&rft.issue=1&rft.spage=L13&rft.pages=L13-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aa7eca&rft_dat=%3Cproquest_O3W%3E2365631019%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365631019&rft_id=info:pmid/&rfr_iscdi=true