Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing
Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the thr...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2016-07, Vol.50 (7), p.935-940 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 7 |
container_start_page | 935 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 50 |
creator | Krivyakin, G. K. Volodin, V. A. Kochubei, S. A. Kamaev, G. N. Purkrt, A. Remes, Z. Fajgar, R. Stuchliková, T. H. Stuchlik, J. |
description | Silicon nanocrystals are formed in the i layers of
p–i–n
structures based on
a
-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm
2
(above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated
p–i–n
structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the
p–i–n
structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates. |
doi_str_mv | 10.1134/S1063782616070101 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22649738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495209067</galeid><sourcerecordid>A495209067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhk1poWnaB-hN0LMTjS3J62MITRMI5JD0bMbyaFfBKxlJ27K3PEP7hn2SzmZDL4UghEbzf_-g0VTVZ5BnAK06vwdp2m7VGDCykyDhTXUCspe1UV3_9hCbtj7o76sPOT9KCbDS6qT6dbcUb3EWS4oLpeIpi-jE8ufpt-cdRC5pZ8sucX7ETJOIQeA2pmUTd1ls9lOKawpYWMl-9pbln75s_l0ChmjTPhecs3AxbRn84fE5n4mJScxcNwkMgXD2Yf2xeucYpk8v52n1_errw-V1fXv37eby4ra2rdalXmmn2rHvJ9tZC5Kc7CZpUWulSRKpUbeAZJAApWmsxN4qQmvIjWMDI7Sn1Zdj3ZiLH7L1heyGHxTIlqFpjOq7dsXU2ZFa40yDDy6WhJbXRNtDg-Q85y9Urxv-btOxAY4Gm2LOidywJL_FtB9ADodZDf_Nij3N0ZOZDWtKw2PcpcDdv2L6CzP3nEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><source>Springer Nature - Complete Springer Journals</source><creator>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</creator><creatorcontrib>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</creatorcontrib><description>Silicon nanocrystals are formed in the i layers of
p–i–n
structures based on
a
-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm
2
(above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated
p–i–n
structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the
p–i–n
structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782616070101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>AMORPHOUS STATE ; Analysis ; ANNEALING ; ELECTROLUMINESCENCE ; HYDROGENATION ; INTERFACES ; IRRADIATION ; LASER RADIATION ; LAYERS ; LEDs ; LIGHT EMITTING DIODES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; MATRIX MATERIALS ; NANOSTRUCTURES ; OPTICAL PROPERTIES ; PHONONS ; Physics ; Physics and Astronomy ; Quantum Phenomena ; RAMAN SPECTRA ; SEMICONDUCTOR JUNCTIONS ; Semiconductor Structures ; SILICON ; SUBSTRATES</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2016-07, Vol.50 (7), p.935-940</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</citedby><cites>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782616070101$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782616070101$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22649738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krivyakin, G. K.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Kochubei, S. A.</creatorcontrib><creatorcontrib>Kamaev, G. N.</creatorcontrib><creatorcontrib>Purkrt, A.</creatorcontrib><creatorcontrib>Remes, Z.</creatorcontrib><creatorcontrib>Fajgar, R.</creatorcontrib><creatorcontrib>Stuchliková, T. H.</creatorcontrib><creatorcontrib>Stuchlik, J.</creatorcontrib><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Silicon nanocrystals are formed in the i layers of
p–i–n
structures based on
a
-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm
2
(above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated
p–i–n
structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the
p–i–n
structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</description><subject>AMORPHOUS STATE</subject><subject>Analysis</subject><subject>ANNEALING</subject><subject>ELECTROLUMINESCENCE</subject><subject>HYDROGENATION</subject><subject>INTERFACES</subject><subject>IRRADIATION</subject><subject>LASER RADIATION</subject><subject>LAYERS</subject><subject>LEDs</subject><subject>LIGHT EMITTING DIODES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>MATRIX MATERIALS</subject><subject>NANOSTRUCTURES</subject><subject>OPTICAL PROPERTIES</subject><subject>PHONONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>RAMAN SPECTRA</subject><subject>SEMICONDUCTOR JUNCTIONS</subject><subject>Semiconductor Structures</subject><subject>SILICON</subject><subject>SUBSTRATES</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhk1poWnaB-hN0LMTjS3J62MITRMI5JD0bMbyaFfBKxlJ27K3PEP7hn2SzmZDL4UghEbzf_-g0VTVZ5BnAK06vwdp2m7VGDCykyDhTXUCspe1UV3_9hCbtj7o76sPOT9KCbDS6qT6dbcUb3EWS4oLpeIpi-jE8ufpt-cdRC5pZ8sucX7ETJOIQeA2pmUTd1ls9lOKawpYWMl-9pbln75s_l0ChmjTPhecs3AxbRn84fE5n4mJScxcNwkMgXD2Yf2xeucYpk8v52n1_errw-V1fXv37eby4ra2rdalXmmn2rHvJ9tZC5Kc7CZpUWulSRKpUbeAZJAApWmsxN4qQmvIjWMDI7Sn1Zdj3ZiLH7L1heyGHxTIlqFpjOq7dsXU2ZFa40yDDy6WhJbXRNtDg-Q85y9Urxv-btOxAY4Gm2LOidywJL_FtB9ADodZDf_Nij3N0ZOZDWtKw2PcpcDdv2L6CzP3nEA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Krivyakin, G. K.</creator><creator>Volodin, V. A.</creator><creator>Kochubei, S. A.</creator><creator>Kamaev, G. N.</creator><creator>Purkrt, A.</creator><creator>Remes, Z.</creator><creator>Fajgar, R.</creator><creator>Stuchliková, T. H.</creator><creator>Stuchlik, J.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20160701</creationdate><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><author>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AMORPHOUS STATE</topic><topic>Analysis</topic><topic>ANNEALING</topic><topic>ELECTROLUMINESCENCE</topic><topic>HYDROGENATION</topic><topic>INTERFACES</topic><topic>IRRADIATION</topic><topic>LASER RADIATION</topic><topic>LAYERS</topic><topic>LEDs</topic><topic>LIGHT EMITTING DIODES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>MATRIX MATERIALS</topic><topic>NANOSTRUCTURES</topic><topic>OPTICAL PROPERTIES</topic><topic>PHONONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>RAMAN SPECTRA</topic><topic>SEMICONDUCTOR JUNCTIONS</topic><topic>Semiconductor Structures</topic><topic>SILICON</topic><topic>SUBSTRATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivyakin, G. K.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Kochubei, S. A.</creatorcontrib><creatorcontrib>Kamaev, G. N.</creatorcontrib><creatorcontrib>Purkrt, A.</creatorcontrib><creatorcontrib>Remes, Z.</creatorcontrib><creatorcontrib>Fajgar, R.</creatorcontrib><creatorcontrib>Stuchliková, T. H.</creatorcontrib><creatorcontrib>Stuchlik, J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivyakin, G. K.</au><au>Volodin, V. A.</au><au>Kochubei, S. A.</au><au>Kamaev, G. N.</au><au>Purkrt, A.</au><au>Remes, Z.</au><au>Fajgar, R.</au><au>Stuchliková, T. H.</au><au>Stuchlik, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>50</volume><issue>7</issue><spage>935</spage><epage>940</epage><pages>935-940</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Silicon nanocrystals are formed in the i layers of
p–i–n
structures based on
a
-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm
2
(above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated
p–i–n
structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the
p–i–n
structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782616070101</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2016-07, Vol.50 (7), p.935-940 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22649738 |
source | Springer Nature - Complete Springer Journals |
subjects | AMORPHOUS STATE Analysis ANNEALING ELECTROLUMINESCENCE HYDROGENATION INTERFACES IRRADIATION LASER RADIATION LAYERS LEDs LIGHT EMITTING DIODES Low-Dimensional Systems Magnetic Materials Magnetism MATERIALS SCIENCE MATRIX MATERIALS NANOSTRUCTURES OPTICAL PROPERTIES PHONONS Physics Physics and Astronomy Quantum Phenomena RAMAN SPECTRA SEMICONDUCTOR JUNCTIONS Semiconductor Structures SILICON SUBSTRATES |
title | Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20properties%20of%20p%E2%80%93i%E2%80%93n%20structures%20based%20on%20amorphous%20hydrogenated%20silicon%20with%20silicon%20nanocrystals%20formed%20via%20nanosecond%20laser%20annealing&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Krivyakin,%20G.%20K.&rft.date=2016-07-01&rft.volume=50&rft.issue=7&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782616070101&rft_dat=%3Cgale_osti_%3EA495209067%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A495209067&rfr_iscdi=true |