Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2016-07, Vol.50 (7), p.935-940
Hauptverfasser: Krivyakin, G. K., Volodin, V. A., Kochubei, S. A., Kamaev, G. N., Purkrt, A., Remes, Z., Fajgar, R., Stuchliková, T. H., Stuchlik, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 7
container_start_page 935
container_title Semiconductors (Woodbury, N.Y.)
container_volume 50
creator Krivyakin, G. K.
Volodin, V. A.
Kochubei, S. A.
Kamaev, G. N.
Purkrt, A.
Remes, Z.
Fajgar, R.
Stuchliková, T. H.
Stuchlik, J.
description Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.
doi_str_mv 10.1134/S1063782616070101
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22649738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495209067</galeid><sourcerecordid>A495209067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhk1poWnaB-hN0LMTjS3J62MITRMI5JD0bMbyaFfBKxlJ27K3PEP7hn2SzmZDL4UghEbzf_-g0VTVZ5BnAK06vwdp2m7VGDCykyDhTXUCspe1UV3_9hCbtj7o76sPOT9KCbDS6qT6dbcUb3EWS4oLpeIpi-jE8ufpt-cdRC5pZ8sucX7ETJOIQeA2pmUTd1ls9lOKawpYWMl-9pbln75s_l0ChmjTPhecs3AxbRn84fE5n4mJScxcNwkMgXD2Yf2xeucYpk8v52n1_errw-V1fXv37eby4ra2rdalXmmn2rHvJ9tZC5Kc7CZpUWulSRKpUbeAZJAApWmsxN4qQmvIjWMDI7Sn1Zdj3ZiLH7L1heyGHxTIlqFpjOq7dsXU2ZFa40yDDy6WhJbXRNtDg-Q85y9Urxv-btOxAY4Gm2LOidywJL_FtB9ADodZDf_Nij3N0ZOZDWtKw2PcpcDdv2L6CzP3nEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><source>Springer Nature - Complete Springer Journals</source><creator>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</creator><creatorcontrib>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</creatorcontrib><description>Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782616070101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>AMORPHOUS STATE ; Analysis ; ANNEALING ; ELECTROLUMINESCENCE ; HYDROGENATION ; INTERFACES ; IRRADIATION ; LASER RADIATION ; LAYERS ; LEDs ; LIGHT EMITTING DIODES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; MATRIX MATERIALS ; NANOSTRUCTURES ; OPTICAL PROPERTIES ; PHONONS ; Physics ; Physics and Astronomy ; Quantum Phenomena ; RAMAN SPECTRA ; SEMICONDUCTOR JUNCTIONS ; Semiconductor Structures ; SILICON ; SUBSTRATES</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2016-07, Vol.50 (7), p.935-940</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</citedby><cites>FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782616070101$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782616070101$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22649738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krivyakin, G. K.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Kochubei, S. A.</creatorcontrib><creatorcontrib>Kamaev, G. N.</creatorcontrib><creatorcontrib>Purkrt, A.</creatorcontrib><creatorcontrib>Remes, Z.</creatorcontrib><creatorcontrib>Fajgar, R.</creatorcontrib><creatorcontrib>Stuchliková, T. H.</creatorcontrib><creatorcontrib>Stuchlik, J.</creatorcontrib><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</description><subject>AMORPHOUS STATE</subject><subject>Analysis</subject><subject>ANNEALING</subject><subject>ELECTROLUMINESCENCE</subject><subject>HYDROGENATION</subject><subject>INTERFACES</subject><subject>IRRADIATION</subject><subject>LASER RADIATION</subject><subject>LAYERS</subject><subject>LEDs</subject><subject>LIGHT EMITTING DIODES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>MATRIX MATERIALS</subject><subject>NANOSTRUCTURES</subject><subject>OPTICAL PROPERTIES</subject><subject>PHONONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>RAMAN SPECTRA</subject><subject>SEMICONDUCTOR JUNCTIONS</subject><subject>Semiconductor Structures</subject><subject>SILICON</subject><subject>SUBSTRATES</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhk1poWnaB-hN0LMTjS3J62MITRMI5JD0bMbyaFfBKxlJ27K3PEP7hn2SzmZDL4UghEbzf_-g0VTVZ5BnAK06vwdp2m7VGDCykyDhTXUCspe1UV3_9hCbtj7o76sPOT9KCbDS6qT6dbcUb3EWS4oLpeIpi-jE8ufpt-cdRC5pZ8sucX7ETJOIQeA2pmUTd1ls9lOKawpYWMl-9pbln75s_l0ChmjTPhecs3AxbRn84fE5n4mJScxcNwkMgXD2Yf2xeucYpk8v52n1_errw-V1fXv37eby4ra2rdalXmmn2rHvJ9tZC5Kc7CZpUWulSRKpUbeAZJAApWmsxN4qQmvIjWMDI7Sn1Zdj3ZiLH7L1heyGHxTIlqFpjOq7dsXU2ZFa40yDDy6WhJbXRNtDg-Q85y9Urxv-btOxAY4Gm2LOidywJL_FtB9ADodZDf_Nij3N0ZOZDWtKw2PcpcDdv2L6CzP3nEA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Krivyakin, G. K.</creator><creator>Volodin, V. A.</creator><creator>Kochubei, S. A.</creator><creator>Kamaev, G. N.</creator><creator>Purkrt, A.</creator><creator>Remes, Z.</creator><creator>Fajgar, R.</creator><creator>Stuchliková, T. H.</creator><creator>Stuchlik, J.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20160701</creationdate><title>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</title><author>Krivyakin, G. K. ; Volodin, V. A. ; Kochubei, S. A. ; Kamaev, G. N. ; Purkrt, A. ; Remes, Z. ; Fajgar, R. ; Stuchliková, T. H. ; Stuchlik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-85f43b99dc7cc10ef07d0ca5545e0ee4b531ae6ae1a062c0a9c4eac6efbb21b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AMORPHOUS STATE</topic><topic>Analysis</topic><topic>ANNEALING</topic><topic>ELECTROLUMINESCENCE</topic><topic>HYDROGENATION</topic><topic>INTERFACES</topic><topic>IRRADIATION</topic><topic>LASER RADIATION</topic><topic>LAYERS</topic><topic>LEDs</topic><topic>LIGHT EMITTING DIODES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>MATRIX MATERIALS</topic><topic>NANOSTRUCTURES</topic><topic>OPTICAL PROPERTIES</topic><topic>PHONONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>RAMAN SPECTRA</topic><topic>SEMICONDUCTOR JUNCTIONS</topic><topic>Semiconductor Structures</topic><topic>SILICON</topic><topic>SUBSTRATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivyakin, G. K.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Kochubei, S. A.</creatorcontrib><creatorcontrib>Kamaev, G. N.</creatorcontrib><creatorcontrib>Purkrt, A.</creatorcontrib><creatorcontrib>Remes, Z.</creatorcontrib><creatorcontrib>Fajgar, R.</creatorcontrib><creatorcontrib>Stuchliková, T. H.</creatorcontrib><creatorcontrib>Stuchlik, J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivyakin, G. K.</au><au>Volodin, V. A.</au><au>Kochubei, S. A.</au><au>Kamaev, G. N.</au><au>Purkrt, A.</au><au>Remes, Z.</au><au>Fajgar, R.</au><au>Stuchliková, T. H.</au><au>Stuchlik, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>50</volume><issue>7</issue><spage>935</spage><epage>940</epage><pages>935-940</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Silicon nanocrystals are formed in the i layers of p–i–n structures based on a -Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm 2 (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782616070101</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2016-07, Vol.50 (7), p.935-940
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22649738
source Springer Nature - Complete Springer Journals
subjects AMORPHOUS STATE
Analysis
ANNEALING
ELECTROLUMINESCENCE
HYDROGENATION
INTERFACES
IRRADIATION
LASER RADIATION
LAYERS
LEDs
LIGHT EMITTING DIODES
Low-Dimensional Systems
Magnetic Materials
Magnetism
MATERIALS SCIENCE
MATRIX MATERIALS
NANOSTRUCTURES
OPTICAL PROPERTIES
PHONONS
Physics
Physics and Astronomy
Quantum Phenomena
RAMAN SPECTRA
SEMICONDUCTOR JUNCTIONS
Semiconductor Structures
SILICON
SUBSTRATES
title Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20properties%20of%20p%E2%80%93i%E2%80%93n%20structures%20based%20on%20amorphous%20hydrogenated%20silicon%20with%20silicon%20nanocrystals%20formed%20via%20nanosecond%20laser%20annealing&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Krivyakin,%20G.%20K.&rft.date=2016-07-01&rft.volume=50&rft.issue=7&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782616070101&rft_dat=%3Cgale_osti_%3EA495209067%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A495209067&rfr_iscdi=true