Room temperature de Haas–van Alphen effect in silicon nanosandwiches

The negative- U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2016-08, Vol.50 (8), p.1025-1033
Hauptverfasser: Bagraev, N. T., Grigoryev, V. Yu, Klyachkin, L. E., Malyarenko, A. M., Mashkov, V. A., Romanov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1033
container_issue 8
container_start_page 1025
container_title Semiconductors (Woodbury, N.Y.)
container_volume 50
creator Bagraev, N. T.
Grigoryev, V. Yu
Klyachkin, L. E.
Malyarenko, A. M.
Mashkov, V. A.
Romanov, V. V.
description The negative- U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p -type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n -type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p -type Si-QW because of the impurity confinement by the stripes consisting of the negative- U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.
doi_str_mv 10.1134/S1063782616080273
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22649728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495209084</galeid><sourcerecordid>A495209084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f4bb5cef951ada74769a87508ae0cce9893a9167edec110d86327522484550ce3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4G7A9dQkk99lKdYKBcGf9ZBm7rQpM5mSTBV3voNv6JOYYdwJchf3knu-y8lB6JrgGSEFu30mWBRSUUEEVpjK4gRNCNY4F0zq02EWRT7sz9FFjHuMCVGcTdDyqevarIf2AMH0xwBZBdnKmPj9-fVmfDZvDjvwGdQ12D5zPouucbbzmTe-i8ZX787uIF6is9o0Ea5--xS9Lu9eFqt8_Xj_sJivc1tw3uc122y4hVpzYiojmRTaKMmxMoCtBa10YTQREiqwhOBKiYJKTilTjHNsoZiim_FuF3tXRut6sLtkxyd3JaWCaUlVUs1G1dY0UDpfd30wNlUF7WAeapfe50xzmiJSLAFkBGzoYgxQl4fgWhM-SoLLId_yT76JoSMTk9ZvIZT77hh8-v0_0A-5bXwx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Room temperature de Haas–van Alphen effect in silicon nanosandwiches</title><source>SpringerNature Journals</source><creator>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V.</creator><creatorcontrib>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V.</creatorcontrib><description>The negative- U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p -type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n -type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p -type Si-QW because of the impurity confinement by the stripes consisting of the negative- U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782616080273</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>BORON ; BOSONS ; DE HAAS-VAN ALPHEN EFFECT ; DOPED MATERIALS ; EFFECTIVE MASS ; ELECTRON-ELECTRON COUPLING ; Electron-electron interactions ; ELECTRONS ; HOLES ; Low-Dimensional Systems ; MAGNETIC FIELDS ; MAGNETIC FLUX ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; N-TYPE CONDUCTORS ; P-TYPE CONDUCTORS ; Physics ; Physics and Astronomy ; Quantum Phenomena ; QUANTUM WELLS ; Semiconductor Structures ; SILICON ; SPIN</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2016-08, Vol.50 (8), p.1025-1033</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f4bb5cef951ada74769a87508ae0cce9893a9167edec110d86327522484550ce3</citedby><cites>FETCH-LOGICAL-c355t-f4bb5cef951ada74769a87508ae0cce9893a9167edec110d86327522484550ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782616080273$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782616080273$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22649728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagraev, N. T.</creatorcontrib><creatorcontrib>Grigoryev, V. Yu</creatorcontrib><creatorcontrib>Klyachkin, L. E.</creatorcontrib><creatorcontrib>Malyarenko, A. M.</creatorcontrib><creatorcontrib>Mashkov, V. A.</creatorcontrib><creatorcontrib>Romanov, V. V.</creatorcontrib><title>Room temperature de Haas–van Alphen effect in silicon nanosandwiches</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The negative- U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p -type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n -type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p -type Si-QW because of the impurity confinement by the stripes consisting of the negative- U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.</description><subject>BORON</subject><subject>BOSONS</subject><subject>DE HAAS-VAN ALPHEN EFFECT</subject><subject>DOPED MATERIALS</subject><subject>EFFECTIVE MASS</subject><subject>ELECTRON-ELECTRON COUPLING</subject><subject>Electron-electron interactions</subject><subject>ELECTRONS</subject><subject>HOLES</subject><subject>Low-Dimensional Systems</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>N-TYPE CONDUCTORS</subject><subject>P-TYPE CONDUCTORS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>QUANTUM WELLS</subject><subject>Semiconductor Structures</subject><subject>SILICON</subject><subject>SPIN</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4G7A9dQkk99lKdYKBcGf9ZBm7rQpM5mSTBV3voNv6JOYYdwJchf3knu-y8lB6JrgGSEFu30mWBRSUUEEVpjK4gRNCNY4F0zq02EWRT7sz9FFjHuMCVGcTdDyqevarIf2AMH0xwBZBdnKmPj9-fVmfDZvDjvwGdQ12D5zPouucbbzmTe-i8ZX787uIF6is9o0Ea5--xS9Lu9eFqt8_Xj_sJivc1tw3uc122y4hVpzYiojmRTaKMmxMoCtBa10YTQREiqwhOBKiYJKTilTjHNsoZiim_FuF3tXRut6sLtkxyd3JaWCaUlVUs1G1dY0UDpfd30wNlUF7WAeapfe50xzmiJSLAFkBGzoYgxQl4fgWhM-SoLLId_yT76JoSMTk9ZvIZT77hh8-v0_0A-5bXwx</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Bagraev, N. T.</creator><creator>Grigoryev, V. Yu</creator><creator>Klyachkin, L. E.</creator><creator>Malyarenko, A. M.</creator><creator>Mashkov, V. A.</creator><creator>Romanov, V. V.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20160801</creationdate><title>Room temperature de Haas–van Alphen effect in silicon nanosandwiches</title><author>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f4bb5cef951ada74769a87508ae0cce9893a9167edec110d86327522484550ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BORON</topic><topic>BOSONS</topic><topic>DE HAAS-VAN ALPHEN EFFECT</topic><topic>DOPED MATERIALS</topic><topic>EFFECTIVE MASS</topic><topic>ELECTRON-ELECTRON COUPLING</topic><topic>Electron-electron interactions</topic><topic>ELECTRONS</topic><topic>HOLES</topic><topic>Low-Dimensional Systems</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>N-TYPE CONDUCTORS</topic><topic>P-TYPE CONDUCTORS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>QUANTUM WELLS</topic><topic>Semiconductor Structures</topic><topic>SILICON</topic><topic>SPIN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagraev, N. T.</creatorcontrib><creatorcontrib>Grigoryev, V. Yu</creatorcontrib><creatorcontrib>Klyachkin, L. E.</creatorcontrib><creatorcontrib>Malyarenko, A. M.</creatorcontrib><creatorcontrib>Mashkov, V. A.</creatorcontrib><creatorcontrib>Romanov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagraev, N. T.</au><au>Grigoryev, V. Yu</au><au>Klyachkin, L. E.</au><au>Malyarenko, A. M.</au><au>Mashkov, V. A.</au><au>Romanov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room temperature de Haas–van Alphen effect in silicon nanosandwiches</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>50</volume><issue>8</issue><spage>1025</spage><epage>1033</epage><pages>1025-1033</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The negative- U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p -type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n -type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p -type Si-QW because of the impurity confinement by the stripes consisting of the negative- U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782616080273</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2016-08, Vol.50 (8), p.1025-1033
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22649728
source SpringerNature Journals
subjects BORON
BOSONS
DE HAAS-VAN ALPHEN EFFECT
DOPED MATERIALS
EFFECTIVE MASS
ELECTRON-ELECTRON COUPLING
Electron-electron interactions
ELECTRONS
HOLES
Low-Dimensional Systems
MAGNETIC FIELDS
MAGNETIC FLUX
Magnetic Materials
Magnetism
MATERIALS SCIENCE
N-TYPE CONDUCTORS
P-TYPE CONDUCTORS
Physics
Physics and Astronomy
Quantum Phenomena
QUANTUM WELLS
Semiconductor Structures
SILICON
SPIN
title Room temperature de Haas–van Alphen effect in silicon nanosandwiches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20temperature%20de%20Haas%E2%80%93van%20Alphen%20effect%20in%20silicon%20nanosandwiches&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Bagraev,%20N.%20T.&rft.date=2016-08-01&rft.volume=50&rft.issue=8&rft.spage=1025&rft.epage=1033&rft.pages=1025-1033&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782616080273&rft_dat=%3Cgale_osti_%3EA495209084%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A495209084&rfr_iscdi=true