The Random Ray Method for neutral particle transport

A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-08, Vol.342
Hauptverfasser: Tramm, John R., Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439, Smith, Kord S., Forget, Benoit, Siegel, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of computational physics
container_volume 342
creator Tramm, John R.
Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439
Smith, Kord S.
Forget, Benoit
Siegel, Andrew R.
description A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.
doi_str_mv 10.1016/J.JCP.2017.04.038
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22622313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22622313</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_226223133</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCtbLA7gFnBvPSWovc1FEEES6l5CmtFKTksTBt7eDD-D08cNPyA6BIWB6uLJreWccMGOQMBD5jEQIBcQ8w3ROIgCOcVEUuCQr758AkB-TPCJJ1Wn6kKaxr4kPvenQ2Ya21lGj38HJgY7ShV4Nmk5l_Ghd2JBFKwevtz_XZH8-VeUltj70tVd90KpT1hitQs15yrlAIf67vi3_O1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Random Ray Method for neutral particle transport</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tramm, John R. ; Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creator><creatorcontrib>Tramm, John R. ; Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creatorcontrib><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/J.JCP.2017.04.038</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; ASTROPHYSICS ; BENCHMARKS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; EFFICIENCY ; GAMMA RADIATION ; MATHEMATICAL METHODS AND COMPUTING ; NEUTRAL PARTICLES ; NEUTRON TRANSPORT ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLE TRACKS ; PHASE SPACE ; RADIANT HEAT TRANSFER ; RANDOMNESS ; REACTOR PHYSICS ; STOCHASTIC PROCESSES</subject><ispartof>Journal of computational physics, 2017-08, Vol.342</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22622313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><title>The Random Ray Method for neutral particle transport</title><title>Journal of computational physics</title><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><subject>ACCURACY</subject><subject>ASTROPHYSICS</subject><subject>BENCHMARKS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>EFFICIENCY</subject><subject>GAMMA RADIATION</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>NEUTRAL PARTICLES</subject><subject>NEUTRON TRANSPORT</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLE TRACKS</subject><subject>PHASE SPACE</subject><subject>RADIANT HEAT TRANSFER</subject><subject>RANDOMNESS</subject><subject>REACTOR PHYSICS</subject><subject>STOCHASTIC PROCESSES</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEgCtbLA7gFnBvPSWovc1FEEES6l5CmtFKTksTBt7eDD-D08cNPyA6BIWB6uLJreWccMGOQMBD5jEQIBcQ8w3ROIgCOcVEUuCQr758AkB-TPCJJ1Wn6kKaxr4kPvenQ2Ya21lGj38HJgY7ShV4Nmk5l_Ghd2JBFKwevtz_XZH8-VeUltj70tVd90KpT1hitQs15yrlAIf67vi3_O1Q</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Tramm, John R.</creator><creator>Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439</creator><creator>Smith, Kord S.</creator><creator>Forget, Benoit</creator><creator>Siegel, Andrew R.</creator><scope>OTOTI</scope></search><sort><creationdate>20170801</creationdate><title>The Random Ray Method for neutral particle transport</title><author>Tramm, John R. ; Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_226223133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACCURACY</topic><topic>ASTROPHYSICS</topic><topic>BENCHMARKS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>EFFICIENCY</topic><topic>GAMMA RADIATION</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>NEUTRAL PARTICLES</topic><topic>NEUTRON TRANSPORT</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLE TRACKS</topic><topic>PHASE SPACE</topic><topic>RADIANT HEAT TRANSFER</topic><topic>RANDOMNESS</topic><topic>REACTOR PHYSICS</topic><topic>STOCHASTIC PROCESSES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tramm, John R.</au><au>Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439</au><au>Smith, Kord S.</au><au>Forget, Benoit</au><au>Siegel, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Random Ray Method for neutral particle transport</atitle><jtitle>Journal of computational physics</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>342</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</abstract><cop>United States</cop><doi>10.1016/J.JCP.2017.04.038</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-08, Vol.342
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22622313
source Access via ScienceDirect (Elsevier)
subjects ACCURACY
ASTROPHYSICS
BENCHMARKS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
EFFICIENCY
GAMMA RADIATION
MATHEMATICAL METHODS AND COMPUTING
NEUTRAL PARTICLES
NEUTRON TRANSPORT
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLE TRACKS
PHASE SPACE
RADIANT HEAT TRANSFER
RANDOMNESS
REACTOR PHYSICS
STOCHASTIC PROCESSES
title The Random Ray Method for neutral particle transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Random%20Ray%20Method%20for%20neutral%20particle%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tramm,%20John%20R.&rft.date=2017-08-01&rft.volume=342&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/J.JCP.2017.04.038&rft_dat=%3Costi%3E22622313%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true