Multi-fidelity Gaussian process regression for prediction of random fields

We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-05, Vol.336, p.36-50
Hauptverfasser: Parussini, L., Venturi, D., Perdikaris, P., Karniadakis, G.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 36
container_title Journal of computational physics
container_volume 336
creator Parussini, L.
Venturi, D.
Perdikaris, P.
Karniadakis, G.E.
description We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.
doi_str_mv 10.1016/j.jcp.2017.01.047
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22622285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117300633</els_id><sourcerecordid>2061943364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG8Fz60zaTZt8SSLrsqKFz2HNJ1oym6zJl3Bf2_KCt48DTO8N7z3MXaJUCCgvO6L3uwKDlgVgAWI6ojNEBrIeYXymM0AOOZN0-ApO4uxB4B6IeoZe3reb0aXW9fRxo3f2UrvY3R6yHbBG4oxC_Qe0nR-yKwP6UydM-O0epsFPXR-m1lHmy6esxOrN5Eufuecvd3fvS4f8vXL6nF5u85N2cgxRy5bklTWvC4pnYRpcWFMXVnZgmlNW3GNYqEtFxXUlZYVlcBb0WokLrQt5-zq8NfH0alo3Ejmw_hhIDMqziXnvF78qVKRzz3FUfV-H4YUTHGQ2IiylCKp8KAywccYyKpdcFsdvhWCmsCqXiWwagKrAFUCmzw3Bw-lkl-OwpSBBpPAhClC590_7h_5nIBX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061943364</pqid></control><display><type>article</type><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</creator><creatorcontrib>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</creatorcontrib><description>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.047</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Bayesian analysis ; BENCHMARKS ; Boussinesq equations ; Burgers equation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational physics ; Computer simulation ; COMPUTERIZED SIMULATION ; Data integration ; ERRORS ; Fields (mathematics) ; FORECASTING ; Free convection ; Gaussian process ; GAUSSIAN PROCESSES ; Gaussian random fields ; Hierarchies ; KRIGING ; Kriging interpolation ; Mathematical models ; MATHEMATICAL SOLUTIONS ; Multi-fidelity modeling ; Multisensor fusion ; NATURAL CONVECTION ; OPTIMIZATION ; Propagation ; RANDOMNESS ; Recursive co-kriging ; Recursive methods ; Regression analysis ; Standard deviation ; STOCHASTIC PROCESSES ; Studies ; Uncertainty ; Uncertainty quantification</subject><ispartof>Journal of computational physics, 2017-05, Vol.336, p.36-50</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</citedby><cites>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</cites><orcidid>0000-0003-1790-9731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.01.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22622285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parussini, L.</creatorcontrib><creatorcontrib>Venturi, D.</creatorcontrib><creatorcontrib>Perdikaris, P.</creatorcontrib><creatorcontrib>Karniadakis, G.E.</creatorcontrib><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><title>Journal of computational physics</title><description>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</description><subject>Bayesian analysis</subject><subject>BENCHMARKS</subject><subject>Boussinesq equations</subject><subject>Burgers equation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Data integration</subject><subject>ERRORS</subject><subject>Fields (mathematics)</subject><subject>FORECASTING</subject><subject>Free convection</subject><subject>Gaussian process</subject><subject>GAUSSIAN PROCESSES</subject><subject>Gaussian random fields</subject><subject>Hierarchies</subject><subject>KRIGING</subject><subject>Kriging interpolation</subject><subject>Mathematical models</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Multi-fidelity modeling</subject><subject>Multisensor fusion</subject><subject>NATURAL CONVECTION</subject><subject>OPTIMIZATION</subject><subject>Propagation</subject><subject>RANDOMNESS</subject><subject>Recursive co-kriging</subject><subject>Recursive methods</subject><subject>Regression analysis</subject><subject>Standard deviation</subject><subject>STOCHASTIC PROCESSES</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG8Fz60zaTZt8SSLrsqKFz2HNJ1oym6zJl3Bf2_KCt48DTO8N7z3MXaJUCCgvO6L3uwKDlgVgAWI6ojNEBrIeYXymM0AOOZN0-ApO4uxB4B6IeoZe3reb0aXW9fRxo3f2UrvY3R6yHbBG4oxC_Qe0nR-yKwP6UydM-O0epsFPXR-m1lHmy6esxOrN5Eufuecvd3fvS4f8vXL6nF5u85N2cgxRy5bklTWvC4pnYRpcWFMXVnZgmlNW3GNYqEtFxXUlZYVlcBb0WokLrQt5-zq8NfH0alo3Ejmw_hhIDMqziXnvF78qVKRzz3FUfV-H4YUTHGQ2IiylCKp8KAywccYyKpdcFsdvhWCmsCqXiWwagKrAFUCmzw3Bw-lkl-OwpSBBpPAhClC590_7h_5nIBX</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Parussini, L.</creator><creator>Venturi, D.</creator><creator>Perdikaris, P.</creator><creator>Karniadakis, G.E.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1790-9731</orcidid></search><sort><creationdate>20170501</creationdate><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><author>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>BENCHMARKS</topic><topic>Boussinesq equations</topic><topic>Burgers equation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Data integration</topic><topic>ERRORS</topic><topic>Fields (mathematics)</topic><topic>FORECASTING</topic><topic>Free convection</topic><topic>Gaussian process</topic><topic>GAUSSIAN PROCESSES</topic><topic>Gaussian random fields</topic><topic>Hierarchies</topic><topic>KRIGING</topic><topic>Kriging interpolation</topic><topic>Mathematical models</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Multi-fidelity modeling</topic><topic>Multisensor fusion</topic><topic>NATURAL CONVECTION</topic><topic>OPTIMIZATION</topic><topic>Propagation</topic><topic>RANDOMNESS</topic><topic>Recursive co-kriging</topic><topic>Recursive methods</topic><topic>Regression analysis</topic><topic>Standard deviation</topic><topic>STOCHASTIC PROCESSES</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parussini, L.</creatorcontrib><creatorcontrib>Venturi, D.</creatorcontrib><creatorcontrib>Perdikaris, P.</creatorcontrib><creatorcontrib>Karniadakis, G.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parussini, L.</au><au>Venturi, D.</au><au>Perdikaris, P.</au><au>Karniadakis, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-fidelity Gaussian process regression for prediction of random fields</atitle><jtitle>Journal of computational physics</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>336</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.047</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1790-9731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-05, Vol.336, p.36-50
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22622285
source Elsevier ScienceDirect Journals Complete
subjects Bayesian analysis
BENCHMARKS
Boussinesq equations
Burgers equation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational physics
Computer simulation
COMPUTERIZED SIMULATION
Data integration
ERRORS
Fields (mathematics)
FORECASTING
Free convection
Gaussian process
GAUSSIAN PROCESSES
Gaussian random fields
Hierarchies
KRIGING
Kriging interpolation
Mathematical models
MATHEMATICAL SOLUTIONS
Multi-fidelity modeling
Multisensor fusion
NATURAL CONVECTION
OPTIMIZATION
Propagation
RANDOMNESS
Recursive co-kriging
Recursive methods
Regression analysis
Standard deviation
STOCHASTIC PROCESSES
Studies
Uncertainty
Uncertainty quantification
title Multi-fidelity Gaussian process regression for prediction of random fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-fidelity%20Gaussian%20process%20regression%20for%20prediction%20of%20random%20fields&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Parussini,%20L.&rft.date=2017-05-01&rft.volume=336&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.047&rft_dat=%3Cproquest_osti_%3E2061943364%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061943364&rft_id=info:pmid/&rft_els_id=S0021999117300633&rfr_iscdi=true