Multi-fidelity Gaussian process regression for prediction of random fields
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extend...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-05, Vol.336, p.36-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | Journal of computational physics |
container_volume | 336 |
creator | Parussini, L. Venturi, D. Perdikaris, P. Karniadakis, G.E. |
description | We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results. |
doi_str_mv | 10.1016/j.jcp.2017.01.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22622285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117300633</els_id><sourcerecordid>2061943364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG8Fz60zaTZt8SSLrsqKFz2HNJ1oym6zJl3Bf2_KCt48DTO8N7z3MXaJUCCgvO6L3uwKDlgVgAWI6ojNEBrIeYXymM0AOOZN0-ApO4uxB4B6IeoZe3reb0aXW9fRxo3f2UrvY3R6yHbBG4oxC_Qe0nR-yKwP6UydM-O0epsFPXR-m1lHmy6esxOrN5Eufuecvd3fvS4f8vXL6nF5u85N2cgxRy5bklTWvC4pnYRpcWFMXVnZgmlNW3GNYqEtFxXUlZYVlcBb0WokLrQt5-zq8NfH0alo3Ejmw_hhIDMqziXnvF78qVKRzz3FUfV-H4YUTHGQ2IiylCKp8KAywccYyKpdcFsdvhWCmsCqXiWwagKrAFUCmzw3Bw-lkl-OwpSBBpPAhClC590_7h_5nIBX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061943364</pqid></control><display><type>article</type><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</creator><creatorcontrib>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</creatorcontrib><description>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.047</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Bayesian analysis ; BENCHMARKS ; Boussinesq equations ; Burgers equation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational physics ; Computer simulation ; COMPUTERIZED SIMULATION ; Data integration ; ERRORS ; Fields (mathematics) ; FORECASTING ; Free convection ; Gaussian process ; GAUSSIAN PROCESSES ; Gaussian random fields ; Hierarchies ; KRIGING ; Kriging interpolation ; Mathematical models ; MATHEMATICAL SOLUTIONS ; Multi-fidelity modeling ; Multisensor fusion ; NATURAL CONVECTION ; OPTIMIZATION ; Propagation ; RANDOMNESS ; Recursive co-kriging ; Recursive methods ; Regression analysis ; Standard deviation ; STOCHASTIC PROCESSES ; Studies ; Uncertainty ; Uncertainty quantification</subject><ispartof>Journal of computational physics, 2017-05, Vol.336, p.36-50</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</citedby><cites>FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</cites><orcidid>0000-0003-1790-9731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.01.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22622285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parussini, L.</creatorcontrib><creatorcontrib>Venturi, D.</creatorcontrib><creatorcontrib>Perdikaris, P.</creatorcontrib><creatorcontrib>Karniadakis, G.E.</creatorcontrib><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><title>Journal of computational physics</title><description>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</description><subject>Bayesian analysis</subject><subject>BENCHMARKS</subject><subject>Boussinesq equations</subject><subject>Burgers equation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Data integration</subject><subject>ERRORS</subject><subject>Fields (mathematics)</subject><subject>FORECASTING</subject><subject>Free convection</subject><subject>Gaussian process</subject><subject>GAUSSIAN PROCESSES</subject><subject>Gaussian random fields</subject><subject>Hierarchies</subject><subject>KRIGING</subject><subject>Kriging interpolation</subject><subject>Mathematical models</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Multi-fidelity modeling</subject><subject>Multisensor fusion</subject><subject>NATURAL CONVECTION</subject><subject>OPTIMIZATION</subject><subject>Propagation</subject><subject>RANDOMNESS</subject><subject>Recursive co-kriging</subject><subject>Recursive methods</subject><subject>Regression analysis</subject><subject>Standard deviation</subject><subject>STOCHASTIC PROCESSES</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG8Fz60zaTZt8SSLrsqKFz2HNJ1oym6zJl3Bf2_KCt48DTO8N7z3MXaJUCCgvO6L3uwKDlgVgAWI6ojNEBrIeYXymM0AOOZN0-ApO4uxB4B6IeoZe3reb0aXW9fRxo3f2UrvY3R6yHbBG4oxC_Qe0nR-yKwP6UydM-O0epsFPXR-m1lHmy6esxOrN5Eufuecvd3fvS4f8vXL6nF5u85N2cgxRy5bklTWvC4pnYRpcWFMXVnZgmlNW3GNYqEtFxXUlZYVlcBb0WokLrQt5-zq8NfH0alo3Ejmw_hhIDMqziXnvF78qVKRzz3FUfV-H4YUTHGQ2IiylCKp8KAywccYyKpdcFsdvhWCmsCqXiWwagKrAFUCmzw3Bw-lkl-OwpSBBpPAhClC590_7h_5nIBX</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Parussini, L.</creator><creator>Venturi, D.</creator><creator>Perdikaris, P.</creator><creator>Karniadakis, G.E.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1790-9731</orcidid></search><sort><creationdate>20170501</creationdate><title>Multi-fidelity Gaussian process regression for prediction of random fields</title><author>Parussini, L. ; Venturi, D. ; Perdikaris, P. ; Karniadakis, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-126be6e38283ec394cb15cc87f6b0cbcb72a145af247087a67e302b4ba1e24af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>BENCHMARKS</topic><topic>Boussinesq equations</topic><topic>Burgers equation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Data integration</topic><topic>ERRORS</topic><topic>Fields (mathematics)</topic><topic>FORECASTING</topic><topic>Free convection</topic><topic>Gaussian process</topic><topic>GAUSSIAN PROCESSES</topic><topic>Gaussian random fields</topic><topic>Hierarchies</topic><topic>KRIGING</topic><topic>Kriging interpolation</topic><topic>Mathematical models</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Multi-fidelity modeling</topic><topic>Multisensor fusion</topic><topic>NATURAL CONVECTION</topic><topic>OPTIMIZATION</topic><topic>Propagation</topic><topic>RANDOMNESS</topic><topic>Recursive co-kriging</topic><topic>Recursive methods</topic><topic>Regression analysis</topic><topic>Standard deviation</topic><topic>STOCHASTIC PROCESSES</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parussini, L.</creatorcontrib><creatorcontrib>Venturi, D.</creatorcontrib><creatorcontrib>Perdikaris, P.</creatorcontrib><creatorcontrib>Karniadakis, G.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parussini, L.</au><au>Venturi, D.</au><au>Perdikaris, P.</au><au>Karniadakis, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-fidelity Gaussian process regression for prediction of random fields</atitle><jtitle>Journal of computational physics</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>336</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.047</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1790-9731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-05, Vol.336, p.36-50 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_22622285 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bayesian analysis BENCHMARKS Boussinesq equations Burgers equation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computational physics Computer simulation COMPUTERIZED SIMULATION Data integration ERRORS Fields (mathematics) FORECASTING Free convection Gaussian process GAUSSIAN PROCESSES Gaussian random fields Hierarchies KRIGING Kriging interpolation Mathematical models MATHEMATICAL SOLUTIONS Multi-fidelity modeling Multisensor fusion NATURAL CONVECTION OPTIMIZATION Propagation RANDOMNESS Recursive co-kriging Recursive methods Regression analysis Standard deviation STOCHASTIC PROCESSES Studies Uncertainty Uncertainty quantification |
title | Multi-fidelity Gaussian process regression for prediction of random fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-fidelity%20Gaussian%20process%20regression%20for%20prediction%20of%20random%20fields&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Parussini,%20L.&rft.date=2017-05-01&rft.volume=336&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.047&rft_dat=%3Cproquest_osti_%3E2061943364%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061943364&rft_id=info:pmid/&rft_els_id=S0021999117300633&rfr_iscdi=true |