Extension of moment projection method to the fragmentation process
The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method i...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-04, Vol.335, p.516-534 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | |
container_start_page | 516 |
container_title | Journal of computational physics |
container_volume | 335 |
creator | Wu, Shaohua Yapp, Edward K.Y. Akroyd, Jethro Mosbach, Sebastian Xu, Rong Yang, Wenming Kraft, Markus |
description | The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn. |
doi_str_mv | 10.1016/j.jcp.2017.01.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22622280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911730061X</els_id><sourcerecordid>2064419295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gLuC69Z70zRpcKWDfzDgRtchTVOnxTZjkhF9e1NHcGc2geR8l3M_Qs4RCgTkl0MxmG1BAUUBWACrDsgCQUJOBfJDsgCgmEsp8ZichDAAQF2xekFubj-jnULvpsx12ehGO8Vs691gTZwfRxs3rs2iy-LGZp3XrzOhf_4SZmwIp-So02_Bnv3eS_Jyd_u8esjXT_ePq-t1bkrJY15RqJuu5TVi20jOsDQdE1aIismaS2ZaXaXTMEFB0Ja1phRUa5S6ERw7WS7JxX6uC7FXwfTRmo1x05RUFaWcUlrDH5Xs3nc2RDW4nZ-SmKLAGUNJZZUo3FPGuxC87dTW96P2XwpBzYWqQaVC1VyoAlSp0JS52mdsWvKjt352sJOxbe9nhdb1_6S_AYQnfHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064419295</pqid></control><display><type>article</type><title>Extension of moment projection method to the fragmentation process</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</creator><creatorcontrib>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</creatorcontrib><description>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.045</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>ACCURACY ; ALGORITHMS ; BALANCES ; Breakage ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; Computational physics ; Computer simulation ; COMPUTERIZED SIMULATION ; DISTRIBUTION ; DISTRIBUTION FUNCTIONS ; EQUATIONS ; FRAGMENTATION ; Initial conditions ; MATHEMATICAL SOLUTIONS ; Method of moments ; Moment projection method ; MOMENTS METHOD ; Particulate systems ; PARTICULATES ; Population balance ; QUADRATURES ; SHRINKAGE ; Stochastic models ; STOCHASTIC PROCESSES ; Studies</subject><ispartof>Journal of computational physics, 2017-04, Vol.335, p.516-534</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</citedby><cites>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</cites><orcidid>0000-0002-2143-8656 ; 0000-0002-4293-8924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911730061X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22622280$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shaohua</creatorcontrib><creatorcontrib>Yapp, Edward K.Y.</creatorcontrib><creatorcontrib>Akroyd, Jethro</creatorcontrib><creatorcontrib>Mosbach, Sebastian</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Yang, Wenming</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><title>Extension of moment projection method to the fragmentation process</title><title>Journal of computational physics</title><description>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</description><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>BALANCES</subject><subject>Breakage</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DISTRIBUTION</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EQUATIONS</subject><subject>FRAGMENTATION</subject><subject>Initial conditions</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Method of moments</subject><subject>Moment projection method</subject><subject>MOMENTS METHOD</subject><subject>Particulate systems</subject><subject>PARTICULATES</subject><subject>Population balance</subject><subject>QUADRATURES</subject><subject>SHRINKAGE</subject><subject>Stochastic models</subject><subject>STOCHASTIC PROCESSES</subject><subject>Studies</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI4-gLuC69Z70zRpcKWDfzDgRtchTVOnxTZjkhF9e1NHcGc2geR8l3M_Qs4RCgTkl0MxmG1BAUUBWACrDsgCQUJOBfJDsgCgmEsp8ZichDAAQF2xekFubj-jnULvpsx12ehGO8Vs691gTZwfRxs3rs2iy-LGZp3XrzOhf_4SZmwIp-So02_Bnv3eS_Jyd_u8esjXT_ePq-t1bkrJY15RqJuu5TVi20jOsDQdE1aIismaS2ZaXaXTMEFB0Ja1phRUa5S6ERw7WS7JxX6uC7FXwfTRmo1x05RUFaWcUlrDH5Xs3nc2RDW4nZ-SmKLAGUNJZZUo3FPGuxC87dTW96P2XwpBzYWqQaVC1VyoAlSp0JS52mdsWvKjt352sJOxbe9nhdb1_6S_AYQnfHE</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Wu, Shaohua</creator><creator>Yapp, Edward K.Y.</creator><creator>Akroyd, Jethro</creator><creator>Mosbach, Sebastian</creator><creator>Xu, Rong</creator><creator>Yang, Wenming</creator><creator>Kraft, Markus</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2143-8656</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid></search><sort><creationdate>20170415</creationdate><title>Extension of moment projection method to the fragmentation process</title><author>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>BALANCES</topic><topic>Breakage</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DISTRIBUTION</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EQUATIONS</topic><topic>FRAGMENTATION</topic><topic>Initial conditions</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Method of moments</topic><topic>Moment projection method</topic><topic>MOMENTS METHOD</topic><topic>Particulate systems</topic><topic>PARTICULATES</topic><topic>Population balance</topic><topic>QUADRATURES</topic><topic>SHRINKAGE</topic><topic>Stochastic models</topic><topic>STOCHASTIC PROCESSES</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shaohua</creatorcontrib><creatorcontrib>Yapp, Edward K.Y.</creatorcontrib><creatorcontrib>Akroyd, Jethro</creatorcontrib><creatorcontrib>Mosbach, Sebastian</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Yang, Wenming</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shaohua</au><au>Yapp, Edward K.Y.</au><au>Akroyd, Jethro</au><au>Mosbach, Sebastian</au><au>Xu, Rong</au><au>Yang, Wenming</au><au>Kraft, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of moment projection method to the fragmentation process</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><spage>516</spage><epage>534</epage><pages>516-534</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.045</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2143-8656</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-04, Vol.335, p.516-534 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_22622280 |
source | Elsevier ScienceDirect Journals |
subjects | ACCURACY ALGORITHMS BALANCES Breakage CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS Computational physics Computer simulation COMPUTERIZED SIMULATION DISTRIBUTION DISTRIBUTION FUNCTIONS EQUATIONS FRAGMENTATION Initial conditions MATHEMATICAL SOLUTIONS Method of moments Moment projection method MOMENTS METHOD Particulate systems PARTICULATES Population balance QUADRATURES SHRINKAGE Stochastic models STOCHASTIC PROCESSES Studies |
title | Extension of moment projection method to the fragmentation process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20moment%20projection%20method%20to%20the%20fragmentation%20process&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wu,%20Shaohua&rft.date=2017-04-15&rft.volume=335&rft.spage=516&rft.epage=534&rft.pages=516-534&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.045&rft_dat=%3Cproquest_osti_%3E2064419295%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064419295&rft_id=info:pmid/&rft_els_id=S002199911730061X&rfr_iscdi=true |