Extension of moment projection method to the fragmentation process

The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-04, Vol.335, p.516-534
Hauptverfasser: Wu, Shaohua, Yapp, Edward K.Y., Akroyd, Jethro, Mosbach, Sebastian, Xu, Rong, Yang, Wenming, Kraft, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue
container_start_page 516
container_title Journal of computational physics
container_volume 335
creator Wu, Shaohua
Yapp, Edward K.Y.
Akroyd, Jethro
Mosbach, Sebastian
Xu, Rong
Yang, Wenming
Kraft, Markus
description The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.
doi_str_mv 10.1016/j.jcp.2017.01.045
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22622280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911730061X</els_id><sourcerecordid>2064419295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gLuC69Z70zRpcKWDfzDgRtchTVOnxTZjkhF9e1NHcGc2geR8l3M_Qs4RCgTkl0MxmG1BAUUBWACrDsgCQUJOBfJDsgCgmEsp8ZichDAAQF2xekFubj-jnULvpsx12ehGO8Vs691gTZwfRxs3rs2iy-LGZp3XrzOhf_4SZmwIp-So02_Bnv3eS_Jyd_u8esjXT_ePq-t1bkrJY15RqJuu5TVi20jOsDQdE1aIismaS2ZaXaXTMEFB0Ja1phRUa5S6ERw7WS7JxX6uC7FXwfTRmo1x05RUFaWcUlrDH5Xs3nc2RDW4nZ-SmKLAGUNJZZUo3FPGuxC87dTW96P2XwpBzYWqQaVC1VyoAlSp0JS52mdsWvKjt352sJOxbe9nhdb1_6S_AYQnfHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064419295</pqid></control><display><type>article</type><title>Extension of moment projection method to the fragmentation process</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</creator><creatorcontrib>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</creatorcontrib><description>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.045</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>ACCURACY ; ALGORITHMS ; BALANCES ; Breakage ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; Computational physics ; Computer simulation ; COMPUTERIZED SIMULATION ; DISTRIBUTION ; DISTRIBUTION FUNCTIONS ; EQUATIONS ; FRAGMENTATION ; Initial conditions ; MATHEMATICAL SOLUTIONS ; Method of moments ; Moment projection method ; MOMENTS METHOD ; Particulate systems ; PARTICULATES ; Population balance ; QUADRATURES ; SHRINKAGE ; Stochastic models ; STOCHASTIC PROCESSES ; Studies</subject><ispartof>Journal of computational physics, 2017-04, Vol.335, p.516-534</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</citedby><cites>FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</cites><orcidid>0000-0002-2143-8656 ; 0000-0002-4293-8924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911730061X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22622280$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shaohua</creatorcontrib><creatorcontrib>Yapp, Edward K.Y.</creatorcontrib><creatorcontrib>Akroyd, Jethro</creatorcontrib><creatorcontrib>Mosbach, Sebastian</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Yang, Wenming</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><title>Extension of moment projection method to the fragmentation process</title><title>Journal of computational physics</title><description>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</description><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>BALANCES</subject><subject>Breakage</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DISTRIBUTION</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EQUATIONS</subject><subject>FRAGMENTATION</subject><subject>Initial conditions</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Method of moments</subject><subject>Moment projection method</subject><subject>MOMENTS METHOD</subject><subject>Particulate systems</subject><subject>PARTICULATES</subject><subject>Population balance</subject><subject>QUADRATURES</subject><subject>SHRINKAGE</subject><subject>Stochastic models</subject><subject>STOCHASTIC PROCESSES</subject><subject>Studies</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI4-gLuC69Z70zRpcKWDfzDgRtchTVOnxTZjkhF9e1NHcGc2geR8l3M_Qs4RCgTkl0MxmG1BAUUBWACrDsgCQUJOBfJDsgCgmEsp8ZichDAAQF2xekFubj-jnULvpsx12ehGO8Vs691gTZwfRxs3rs2iy-LGZp3XrzOhf_4SZmwIp-So02_Bnv3eS_Jyd_u8esjXT_ePq-t1bkrJY15RqJuu5TVi20jOsDQdE1aIismaS2ZaXaXTMEFB0Ja1phRUa5S6ERw7WS7JxX6uC7FXwfTRmo1x05RUFaWcUlrDH5Xs3nc2RDW4nZ-SmKLAGUNJZZUo3FPGuxC87dTW96P2XwpBzYWqQaVC1VyoAlSp0JS52mdsWvKjt352sJOxbe9nhdb1_6S_AYQnfHE</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Wu, Shaohua</creator><creator>Yapp, Edward K.Y.</creator><creator>Akroyd, Jethro</creator><creator>Mosbach, Sebastian</creator><creator>Xu, Rong</creator><creator>Yang, Wenming</creator><creator>Kraft, Markus</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2143-8656</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid></search><sort><creationdate>20170415</creationdate><title>Extension of moment projection method to the fragmentation process</title><author>Wu, Shaohua ; Yapp, Edward K.Y. ; Akroyd, Jethro ; Mosbach, Sebastian ; Xu, Rong ; Yang, Wenming ; Kraft, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5208bfd6811db96413cf47e775498694cda5555b472072d4dc372aa19ab761f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>BALANCES</topic><topic>Breakage</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DISTRIBUTION</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EQUATIONS</topic><topic>FRAGMENTATION</topic><topic>Initial conditions</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Method of moments</topic><topic>Moment projection method</topic><topic>MOMENTS METHOD</topic><topic>Particulate systems</topic><topic>PARTICULATES</topic><topic>Population balance</topic><topic>QUADRATURES</topic><topic>SHRINKAGE</topic><topic>Stochastic models</topic><topic>STOCHASTIC PROCESSES</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shaohua</creatorcontrib><creatorcontrib>Yapp, Edward K.Y.</creatorcontrib><creatorcontrib>Akroyd, Jethro</creatorcontrib><creatorcontrib>Mosbach, Sebastian</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Yang, Wenming</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shaohua</au><au>Yapp, Edward K.Y.</au><au>Akroyd, Jethro</au><au>Mosbach, Sebastian</au><au>Xu, Rong</au><au>Yang, Wenming</au><au>Kraft, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of moment projection method to the fragmentation process</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><spage>516</spage><epage>534</epage><pages>516-534</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.045</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2143-8656</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-04, Vol.335, p.516-534
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22622280
source Elsevier ScienceDirect Journals
subjects ACCURACY
ALGORITHMS
BALANCES
Breakage
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
Computational physics
Computer simulation
COMPUTERIZED SIMULATION
DISTRIBUTION
DISTRIBUTION FUNCTIONS
EQUATIONS
FRAGMENTATION
Initial conditions
MATHEMATICAL SOLUTIONS
Method of moments
Moment projection method
MOMENTS METHOD
Particulate systems
PARTICULATES
Population balance
QUADRATURES
SHRINKAGE
Stochastic models
STOCHASTIC PROCESSES
Studies
title Extension of moment projection method to the fragmentation process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20moment%20projection%20method%20to%20the%20fragmentation%20process&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wu,%20Shaohua&rft.date=2017-04-15&rft.volume=335&rft.spage=516&rft.epage=534&rft.pages=516-534&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.045&rft_dat=%3Cproquest_osti_%3E2064419295%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064419295&rft_id=info:pmid/&rft_els_id=S002199911730061X&rfr_iscdi=true