A difference-equation formalism for the nodal domains of separable billiards

Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2016-09, Vol.372, p.68-73
Hauptverfasser: Manjunath, Naren, Samajdar, Rhine, Jain, Sudhir R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 68
container_title Annals of physics
container_volume 372
creator Manjunath, Naren
Samajdar, Rhine
Jain, Sudhir R.
description Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.
doi_str_mv 10.1016/j.aop.2016.04.014
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22617371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491616300380</els_id><sourcerecordid>4199509581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1615NdPiahh8wYAbBXfhNrlhUtpmJukI_ntbRnDn6p7FOYdzP0JuGS0YZeq-LSDsCz7JgsqCMnlGFozWKqei_DwnC0qpyGXN1CW5SqmllDFZVguyXWfWO4cRB4M5Ho4w-jBkLsQeOp_6WWXjDrMhWOgyG3rwQ8qCyxLuIULTYdb4rvMQbbomFw66hDe_d0k-nh7fNy_59u35dbPe5kbUasyFaDinHB0qUCgV5w3HqgFYIeelrEVVATdWKQTXgGwsLaXCSmJloKFCiSW5O_WGNHqdjB_R7EwYBjSj5lyxlVixP9c-hsMR06jbcIzDNEyzistSKVZWk4udXCaGlCI6vY--h_itGdUzWt3qCa2e0Woq9YR2yjycMjg9-eUxzhtmgNbHeYIN_p_0D7oQgN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824566158</pqid></control><display><type>article</type><title>A difference-equation formalism for the nodal domains of separable billiards</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</creator><creatorcontrib>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</creatorcontrib><description>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2016.04.014</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Billiards ; BOUNDARY CONDITIONS ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Differential equations ; DIRICHLET PROBLEM ; EXACT SOLUTIONS ; Integrable billiard ; INTEGRAL CALCULUS ; Nodal domain ; Quantum chaos ; Theoretical physics</subject><ispartof>Annals of physics, 2016-09, Vol.372, p.68-73</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</citedby><cites>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2016.04.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22617371$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjunath, Naren</creatorcontrib><creatorcontrib>Samajdar, Rhine</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><title>A difference-equation formalism for the nodal domains of separable billiards</title><title>Annals of physics</title><description>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</description><subject>Billiards</subject><subject>BOUNDARY CONDITIONS</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Differential equations</subject><subject>DIRICHLET PROBLEM</subject><subject>EXACT SOLUTIONS</subject><subject>Integrable billiard</subject><subject>INTEGRAL CALCULUS</subject><subject>Nodal domain</subject><subject>Quantum chaos</subject><subject>Theoretical physics</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1615NdPiahh8wYAbBXfhNrlhUtpmJukI_ntbRnDn6p7FOYdzP0JuGS0YZeq-LSDsCz7JgsqCMnlGFozWKqei_DwnC0qpyGXN1CW5SqmllDFZVguyXWfWO4cRB4M5Ho4w-jBkLsQeOp_6WWXjDrMhWOgyG3rwQ8qCyxLuIULTYdb4rvMQbbomFw66hDe_d0k-nh7fNy_59u35dbPe5kbUasyFaDinHB0qUCgV5w3HqgFYIeelrEVVATdWKQTXgGwsLaXCSmJloKFCiSW5O_WGNHqdjB_R7EwYBjSj5lyxlVixP9c-hsMR06jbcIzDNEyzistSKVZWk4udXCaGlCI6vY--h_itGdUzWt3qCa2e0Woq9YR2yjycMjg9-eUxzhtmgNbHeYIN_p_0D7oQgN0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Manjunath, Naren</creator><creator>Samajdar, Rhine</creator><creator>Jain, Sudhir R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160901</creationdate><title>A difference-equation formalism for the nodal domains of separable billiards</title><author>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Billiards</topic><topic>BOUNDARY CONDITIONS</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Differential equations</topic><topic>DIRICHLET PROBLEM</topic><topic>EXACT SOLUTIONS</topic><topic>Integrable billiard</topic><topic>INTEGRAL CALCULUS</topic><topic>Nodal domain</topic><topic>Quantum chaos</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjunath, Naren</creatorcontrib><creatorcontrib>Samajdar, Rhine</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjunath, Naren</au><au>Samajdar, Rhine</au><au>Jain, Sudhir R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A difference-equation formalism for the nodal domains of separable billiards</atitle><jtitle>Annals of physics</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>372</volume><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2016.04.014</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2016-09, Vol.372, p.68-73
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22617371
source Elsevier ScienceDirect Journals Complete
subjects Billiards
BOUNDARY CONDITIONS
CHAOS THEORY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Differential equations
DIRICHLET PROBLEM
EXACT SOLUTIONS
Integrable billiard
INTEGRAL CALCULUS
Nodal domain
Quantum chaos
Theoretical physics
title A difference-equation formalism for the nodal domains of separable billiards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20difference-equation%20formalism%20for%20the%20nodal%20domains%20of%20separable%20billiards&rft.jtitle=Annals%20of%20physics&rft.au=Manjunath,%20Naren&rft.date=2016-09-01&rft.volume=372&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2016.04.014&rft_dat=%3Cproquest_osti_%3E4199509581%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824566158&rft_id=info:pmid/&rft_els_id=S0003491616300380&rfr_iscdi=true