A difference-equation formalism for the nodal domains of separable billiards
Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate t...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2016-09, Vol.372, p.68-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 68 |
container_title | Annals of physics |
container_volume | 372 |
creator | Manjunath, Naren Samajdar, Rhine Jain, Sudhir R. |
description | Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards. |
doi_str_mv | 10.1016/j.aop.2016.04.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22617371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491616300380</els_id><sourcerecordid>4199509581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1615NdPiahh8wYAbBXfhNrlhUtpmJukI_ntbRnDn6p7FOYdzP0JuGS0YZeq-LSDsCz7JgsqCMnlGFozWKqei_DwnC0qpyGXN1CW5SqmllDFZVguyXWfWO4cRB4M5Ho4w-jBkLsQeOp_6WWXjDrMhWOgyG3rwQ8qCyxLuIULTYdb4rvMQbbomFw66hDe_d0k-nh7fNy_59u35dbPe5kbUasyFaDinHB0qUCgV5w3HqgFYIeelrEVVATdWKQTXgGwsLaXCSmJloKFCiSW5O_WGNHqdjB_R7EwYBjSj5lyxlVixP9c-hsMR06jbcIzDNEyzistSKVZWk4udXCaGlCI6vY--h_itGdUzWt3qCa2e0Woq9YR2yjycMjg9-eUxzhtmgNbHeYIN_p_0D7oQgN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824566158</pqid></control><display><type>article</type><title>A difference-equation formalism for the nodal domains of separable billiards</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</creator><creatorcontrib>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</creatorcontrib><description>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2016.04.014</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Billiards ; BOUNDARY CONDITIONS ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Differential equations ; DIRICHLET PROBLEM ; EXACT SOLUTIONS ; Integrable billiard ; INTEGRAL CALCULUS ; Nodal domain ; Quantum chaos ; Theoretical physics</subject><ispartof>Annals of physics, 2016-09, Vol.372, p.68-73</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</citedby><cites>FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2016.04.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22617371$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjunath, Naren</creatorcontrib><creatorcontrib>Samajdar, Rhine</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><title>A difference-equation formalism for the nodal domains of separable billiards</title><title>Annals of physics</title><description>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</description><subject>Billiards</subject><subject>BOUNDARY CONDITIONS</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Differential equations</subject><subject>DIRICHLET PROBLEM</subject><subject>EXACT SOLUTIONS</subject><subject>Integrable billiard</subject><subject>INTEGRAL CALCULUS</subject><subject>Nodal domain</subject><subject>Quantum chaos</subject><subject>Theoretical physics</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1615NdPiahh8wYAbBXfhNrlhUtpmJukI_ntbRnDn6p7FOYdzP0JuGS0YZeq-LSDsCz7JgsqCMnlGFozWKqei_DwnC0qpyGXN1CW5SqmllDFZVguyXWfWO4cRB4M5Ho4w-jBkLsQeOp_6WWXjDrMhWOgyG3rwQ8qCyxLuIULTYdb4rvMQbbomFw66hDe_d0k-nh7fNy_59u35dbPe5kbUasyFaDinHB0qUCgV5w3HqgFYIeelrEVVATdWKQTXgGwsLaXCSmJloKFCiSW5O_WGNHqdjB_R7EwYBjSj5lyxlVixP9c-hsMR06jbcIzDNEyzistSKVZWk4udXCaGlCI6vY--h_itGdUzWt3qCa2e0Woq9YR2yjycMjg9-eUxzhtmgNbHeYIN_p_0D7oQgN0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Manjunath, Naren</creator><creator>Samajdar, Rhine</creator><creator>Jain, Sudhir R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160901</creationdate><title>A difference-equation formalism for the nodal domains of separable billiards</title><author>Manjunath, Naren ; Samajdar, Rhine ; Jain, Sudhir R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-33b2202efe6a6e4622b2e8baa7e22549388a2cd66eafba4bd0546e84e8cab0363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Billiards</topic><topic>BOUNDARY CONDITIONS</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Differential equations</topic><topic>DIRICHLET PROBLEM</topic><topic>EXACT SOLUTIONS</topic><topic>Integrable billiard</topic><topic>INTEGRAL CALCULUS</topic><topic>Nodal domain</topic><topic>Quantum chaos</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjunath, Naren</creatorcontrib><creatorcontrib>Samajdar, Rhine</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjunath, Naren</au><au>Samajdar, Rhine</au><au>Jain, Sudhir R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A difference-equation formalism for the nodal domains of separable billiards</atitle><jtitle>Annals of physics</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>372</volume><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2016.04.014</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2016-09, Vol.372, p.68-73 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22617371 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Billiards BOUNDARY CONDITIONS CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Differential equations DIRICHLET PROBLEM EXACT SOLUTIONS Integrable billiard INTEGRAL CALCULUS Nodal domain Quantum chaos Theoretical physics |
title | A difference-equation formalism for the nodal domains of separable billiards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20difference-equation%20formalism%20for%20the%20nodal%20domains%20of%20separable%20billiards&rft.jtitle=Annals%20of%20physics&rft.au=Manjunath,%20Naren&rft.date=2016-09-01&rft.volume=372&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2016.04.014&rft_dat=%3Cproquest_osti_%3E4199509581%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824566158&rft_id=info:pmid/&rft_els_id=S0003491616300380&rfr_iscdi=true |