Mean Field Type Control with Congestion
We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal con...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2016-06, Vol.73 (3), p.393-418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 3 |
container_start_page | 393 |
container_title | Applied mathematics & optimization |
container_volume | 73 |
creator | Achdou, Yves Laurière, Mathieu |
description | We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality. |
doi_str_mv | 10.1007/s00245-016-9342-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22617323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4051249871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4K7gQjfR95JJMllKsSpU3NR1yKQZO2U6qckU6d-bMqJuJItH4Nz7kkPIJcItAqi7BMAKQQEl1bxgtDwiIyw4oyBBHpMRgBa0kChPyVlKa8g4l3xErl-87SazxrfLyWK_9ZNp6PoY2sln068Ol3ef-iZ05-Sktm3yF99zTN5mD4vpE52_Pj5P7-fUFQx66mzFS-dVpSxavvS1lq5G5iEfq-uqUtyVoqi4sLVXXKAQFddWCW2x9nzJx-Rq6A15rUmu6b1budB13vWGMYmKM56pm4HaxvCxyy80myY537a282GXDJYooQCp9W_hD7oOu9jlPxhUpdJZRFYxJjhQLoaUoq_NNjYbG_cGwRwEm0GwyYLNQbApc4YNmZTZ7Cn-af439AXCIHtY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787900202</pqid></control><display><type>article</type><title>Mean Field Type Control with Congestion</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Achdou, Yves ; Laurière, Mathieu</creator><creatorcontrib>Achdou, Yves ; Laurière, Mathieu</creatorcontrib><description>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-016-9342-8</identifier><identifier>CODEN: AMOMBN</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Congestion ; Control ; Control systems ; Control theory ; DUALITY ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; MATHEMATICAL SOLUTIONS ; Mathematics ; Mathematics and Statistics ; MEAN-FIELD THEORY ; Numerical and Computational Physics ; OPTIMAL CONTROL ; Optimization ; PARTIAL DIFFERENTIAL EQUATIONS ; Probability distribution ; Simulation ; Studies ; Systems Theory ; Theoretical ; Uniqueness</subject><ispartof>Applied mathematics & optimization, 2016-06, Vol.73 (3), p.393-418</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</citedby><cites>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-016-9342-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-016-9342-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22617323$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Achdou, Yves</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><title>Mean Field Type Control with Congestion</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Congestion</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>DUALITY</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>MEAN-FIELD THEORY</subject><subject>Numerical and Computational Physics</subject><subject>OPTIMAL CONTROL</subject><subject>Optimization</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Probability distribution</subject><subject>Simulation</subject><subject>Studies</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Uniqueness</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4K7gQjfR95JJMllKsSpU3NR1yKQZO2U6qckU6d-bMqJuJItH4Nz7kkPIJcItAqi7BMAKQQEl1bxgtDwiIyw4oyBBHpMRgBa0kChPyVlKa8g4l3xErl-87SazxrfLyWK_9ZNp6PoY2sln068Ol3ef-iZ05-Sktm3yF99zTN5mD4vpE52_Pj5P7-fUFQx66mzFS-dVpSxavvS1lq5G5iEfq-uqUtyVoqi4sLVXXKAQFddWCW2x9nzJx-Rq6A15rUmu6b1budB13vWGMYmKM56pm4HaxvCxyy80myY537a282GXDJYooQCp9W_hD7oOu9jlPxhUpdJZRFYxJjhQLoaUoq_NNjYbG_cGwRwEm0GwyYLNQbApc4YNmZTZ7Cn-af439AXCIHtY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Achdou, Yves</creator><creator>Laurière, Mathieu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20160601</creationdate><title>Mean Field Type Control with Congestion</title><author>Achdou, Yves ; Laurière, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Congestion</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>DUALITY</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>MEAN-FIELD THEORY</topic><topic>Numerical and Computational Physics</topic><topic>OPTIMAL CONTROL</topic><topic>Optimization</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Probability distribution</topic><topic>Simulation</topic><topic>Studies</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achdou, Yves</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achdou, Yves</au><au>Laurière, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean Field Type Control with Congestion</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>73</volume><issue>3</issue><spage>393</spage><epage>418</epage><pages>393-418</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><coden>AMOMBN</coden><abstract>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-016-9342-8</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2016-06, Vol.73 (3), p.393-418 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_osti_scitechconnect_22617323 |
source | SpringerLink; Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Congestion Control Control systems Control theory DUALITY Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics MATHEMATICAL SOLUTIONS Mathematics Mathematics and Statistics MEAN-FIELD THEORY Numerical and Computational Physics OPTIMAL CONTROL Optimization PARTIAL DIFFERENTIAL EQUATIONS Probability distribution Simulation Studies Systems Theory Theoretical Uniqueness |
title | Mean Field Type Control with Congestion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20Field%20Type%20Control%20with%20Congestion&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Achdou,%20Yves&rft.date=2016-06-01&rft.volume=73&rft.issue=3&rft.spage=393&rft.epage=418&rft.pages=393-418&rft.issn=0095-4616&rft.eissn=1432-0606&rft.coden=AMOMBN&rft_id=info:doi/10.1007/s00245-016-9342-8&rft_dat=%3Cproquest_osti_%3E4051249871%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787900202&rft_id=info:pmid/&rfr_iscdi=true |