Mean Field Type Control with Congestion

We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2016-06, Vol.73 (3), p.393-418
Hauptverfasser: Achdou, Yves, Laurière, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 3
container_start_page 393
container_title Applied mathematics & optimization
container_volume 73
creator Achdou, Yves
Laurière, Mathieu
description We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.
doi_str_mv 10.1007/s00245-016-9342-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22617323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4051249871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4K7gQjfR95JJMllKsSpU3NR1yKQZO2U6qckU6d-bMqJuJItH4Nz7kkPIJcItAqi7BMAKQQEl1bxgtDwiIyw4oyBBHpMRgBa0kChPyVlKa8g4l3xErl-87SazxrfLyWK_9ZNp6PoY2sln068Ol3ef-iZ05-Sktm3yF99zTN5mD4vpE52_Pj5P7-fUFQx66mzFS-dVpSxavvS1lq5G5iEfq-uqUtyVoqi4sLVXXKAQFddWCW2x9nzJx-Rq6A15rUmu6b1budB13vWGMYmKM56pm4HaxvCxyy80myY537a282GXDJYooQCp9W_hD7oOu9jlPxhUpdJZRFYxJjhQLoaUoq_NNjYbG_cGwRwEm0GwyYLNQbApc4YNmZTZ7Cn-af439AXCIHtY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787900202</pqid></control><display><type>article</type><title>Mean Field Type Control with Congestion</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Achdou, Yves ; Laurière, Mathieu</creator><creatorcontrib>Achdou, Yves ; Laurière, Mathieu</creatorcontrib><description>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-016-9342-8</identifier><identifier>CODEN: AMOMBN</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Congestion ; Control ; Control systems ; Control theory ; DUALITY ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; MATHEMATICAL SOLUTIONS ; Mathematics ; Mathematics and Statistics ; MEAN-FIELD THEORY ; Numerical and Computational Physics ; OPTIMAL CONTROL ; Optimization ; PARTIAL DIFFERENTIAL EQUATIONS ; Probability distribution ; Simulation ; Studies ; Systems Theory ; Theoretical ; Uniqueness</subject><ispartof>Applied mathematics &amp; optimization, 2016-06, Vol.73 (3), p.393-418</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</citedby><cites>FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-016-9342-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-016-9342-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22617323$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Achdou, Yves</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><title>Mean Field Type Control with Congestion</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Congestion</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>DUALITY</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>MEAN-FIELD THEORY</subject><subject>Numerical and Computational Physics</subject><subject>OPTIMAL CONTROL</subject><subject>Optimization</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Probability distribution</subject><subject>Simulation</subject><subject>Studies</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Uniqueness</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4K7gQjfR95JJMllKsSpU3NR1yKQZO2U6qckU6d-bMqJuJItH4Nz7kkPIJcItAqi7BMAKQQEl1bxgtDwiIyw4oyBBHpMRgBa0kChPyVlKa8g4l3xErl-87SazxrfLyWK_9ZNp6PoY2sln068Ol3ef-iZ05-Sktm3yF99zTN5mD4vpE52_Pj5P7-fUFQx66mzFS-dVpSxavvS1lq5G5iEfq-uqUtyVoqi4sLVXXKAQFddWCW2x9nzJx-Rq6A15rUmu6b1budB13vWGMYmKM56pm4HaxvCxyy80myY537a282GXDJYooQCp9W_hD7oOu9jlPxhUpdJZRFYxJjhQLoaUoq_NNjYbG_cGwRwEm0GwyYLNQbApc4YNmZTZ7Cn-af439AXCIHtY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Achdou, Yves</creator><creator>Laurière, Mathieu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20160601</creationdate><title>Mean Field Type Control with Congestion</title><author>Achdou, Yves ; Laurière, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cab38ce7b7a1a3def96cf12e0e0ea9fbb73c854b35afe735155b39a759a1fe3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Congestion</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>DUALITY</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>MEAN-FIELD THEORY</topic><topic>Numerical and Computational Physics</topic><topic>OPTIMAL CONTROL</topic><topic>Optimization</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Probability distribution</topic><topic>Simulation</topic><topic>Studies</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achdou, Yves</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achdou, Yves</au><au>Laurière, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean Field Type Control with Congestion</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>73</volume><issue>3</issue><spage>393</spage><epage>418</epage><pages>393-418</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><coden>AMOMBN</coden><abstract>We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-016-9342-8</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2016-06, Vol.73 (3), p.393-418
issn 0095-4616
1432-0606
language eng
recordid cdi_osti_scitechconnect_22617323
source SpringerLink; Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Congestion
Control
Control systems
Control theory
DUALITY
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
MATHEMATICAL SOLUTIONS
Mathematics
Mathematics and Statistics
MEAN-FIELD THEORY
Numerical and Computational Physics
OPTIMAL CONTROL
Optimization
PARTIAL DIFFERENTIAL EQUATIONS
Probability distribution
Simulation
Studies
Systems Theory
Theoretical
Uniqueness
title Mean Field Type Control with Congestion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20Field%20Type%20Control%20with%20Congestion&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Achdou,%20Yves&rft.date=2016-06-01&rft.volume=73&rft.issue=3&rft.spage=393&rft.epage=418&rft.pages=393-418&rft.issn=0095-4616&rft.eissn=1432-0606&rft.coden=AMOMBN&rft_id=info:doi/10.1007/s00245-016-9342-8&rft_dat=%3Cproquest_osti_%3E4051249871%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787900202&rft_id=info:pmid/&rfr_iscdi=true