Scaling and excitation of combined convection in a rapidly rotating plane layer
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convecti...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2017-02, Vol.124 (2), p.352-357 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 2 |
container_start_page | 352 |
container_title | Journal of experimental and theoretical physics |
container_volume | 124 |
creator | Starchenko, S. V. |
description | The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (
s
) and the ratio thermal convection/compositional convection (
r
). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10
–3
substitutes for the generally accepted Ekman number (
E
~ 10
–15
) and
s
~ 10
–6
substitutes for the inverse Rayleigh number 1/Ra ~ 10
–30
. It is found that, at turbulent transport coefficients, number
s
and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers
s
(which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects. |
doi_str_mv | 10.1134/S1063776117020091 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22617059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499178956</galeid><sourcerecordid>A499178956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-392484851e2ee131bee5abadf69e90fe60fd6e93a0be3de8217dbb5828c324ba3</originalsourceid><addsrcrecordid>eNp1kVtL9DAQhosoePwB3hW88qI6OTRNLkU-DyAIrl6HNJ2ukW6yJt0P99-buoKKSC4yTJ5neMkUxTGBM0IYP58REKxpBCENUABFtoo9AgoqUYPanmrBqul9t9hP6QUAJAW1V9zPrBmcn5fGdyW-WTea0QVfhr60YdE6j10u_H-0H23nS1NGs3TdsC5jmODsLgfjsRzMGuNhsdObIeHR531QPF39e7y8qe7ur28vL-4qy3gzVkxRLrmsCVJEwkiLWJvWdL1QqKBHAX0nUDEDLbIOJSVN17a1pNIyylvDDoqTzdyQRqdTzo32OQf1OaimVORvqNUXtYzhdYVp1C9hFX0OpomU0HDOpcjU2YaamwG1830Yo7H5dLhweSb2LvcvuFKkkaqehNMfQmZGfBvnZpWSvp09_GTJhrUxpBSx18voFiauNQE9rU7_Wl126MZJmfVzjN9i_ym9AzJdmPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880744486</pqid></control><display><type>article</type><title>Scaling and excitation of combined convection in a rapidly rotating plane layer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Starchenko, S. V.</creator><creatorcontrib>Starchenko, S. V.</creatorcontrib><description>The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (
s
) and the ratio thermal convection/compositional convection (
r
). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10
–3
substitutes for the generally accepted Ekman number (
E
~ 10
–15
) and
s
~ 10
–6
substitutes for the inverse Rayleigh number 1/Ra ~ 10
–30
. It is found that, at turbulent transport coefficients, number
s
and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers
s
(which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776117020091</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ASYMPTOTIC SOLUTIONS ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; Core (Geology) ; DISPERSION RELATIONS ; DISPERSIONS ; Dissipation ; Earth core ; Earth rotation ; Elementary Particles ; EXCITATION ; EXPANSION ; LAYERS ; LIQUIDS ; Nonlinear ; Oceans ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; PLANETS ; PRANDTL NUMBER ; Quantum Field Theory ; RAYLEIGH NUMBER ; Relativity Theory ; ROTATION ; Scaling ; Soft Matter Physics ; Solid State Physics ; STARS ; Statistical ; Thermal expansion ; THICKNESS ; Transport properties ; Turbulence</subject><ispartof>Journal of experimental and theoretical physics, 2017-02, Vol.124 (2), p.352-357</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-392484851e2ee131bee5abadf69e90fe60fd6e93a0be3de8217dbb5828c324ba3</citedby><cites>FETCH-LOGICAL-c347t-392484851e2ee131bee5abadf69e90fe60fd6e93a0be3de8217dbb5828c324ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776117020091$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776117020091$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22617059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Starchenko, S. V.</creatorcontrib><title>Scaling and excitation of combined convection in a rapidly rotating plane layer</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (
s
) and the ratio thermal convection/compositional convection (
r
). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10
–3
substitutes for the generally accepted Ekman number (
E
~ 10
–15
) and
s
~ 10
–6
substitutes for the inverse Rayleigh number 1/Ra ~ 10
–30
. It is found that, at turbulent transport coefficients, number
s
and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers
s
(which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.</description><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>Core (Geology)</subject><subject>DISPERSION RELATIONS</subject><subject>DISPERSIONS</subject><subject>Dissipation</subject><subject>Earth core</subject><subject>Earth rotation</subject><subject>Elementary Particles</subject><subject>EXCITATION</subject><subject>EXPANSION</subject><subject>LAYERS</subject><subject>LIQUIDS</subject><subject>Nonlinear</subject><subject>Oceans</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLANETS</subject><subject>PRANDTL NUMBER</subject><subject>Quantum Field Theory</subject><subject>RAYLEIGH NUMBER</subject><subject>Relativity Theory</subject><subject>ROTATION</subject><subject>Scaling</subject><subject>Soft Matter Physics</subject><subject>Solid State Physics</subject><subject>STARS</subject><subject>Statistical</subject><subject>Thermal expansion</subject><subject>THICKNESS</subject><subject>Transport properties</subject><subject>Turbulence</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kVtL9DAQhosoePwB3hW88qI6OTRNLkU-DyAIrl6HNJ2ukW6yJt0P99-buoKKSC4yTJ5neMkUxTGBM0IYP58REKxpBCENUABFtoo9AgoqUYPanmrBqul9t9hP6QUAJAW1V9zPrBmcn5fGdyW-WTea0QVfhr60YdE6j10u_H-0H23nS1NGs3TdsC5jmODsLgfjsRzMGuNhsdObIeHR531QPF39e7y8qe7ur28vL-4qy3gzVkxRLrmsCVJEwkiLWJvWdL1QqKBHAX0nUDEDLbIOJSVN17a1pNIyylvDDoqTzdyQRqdTzo32OQf1OaimVORvqNUXtYzhdYVp1C9hFX0OpomU0HDOpcjU2YaamwG1830Yo7H5dLhweSb2LvcvuFKkkaqehNMfQmZGfBvnZpWSvp09_GTJhrUxpBSx18voFiauNQE9rU7_Wl126MZJmfVzjN9i_ym9AzJdmPM</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Starchenko, S. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20170201</creationdate><title>Scaling and excitation of combined convection in a rapidly rotating plane layer</title><author>Starchenko, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-392484851e2ee131bee5abadf69e90fe60fd6e93a0be3de8217dbb5828c324ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>Core (Geology)</topic><topic>DISPERSION RELATIONS</topic><topic>DISPERSIONS</topic><topic>Dissipation</topic><topic>Earth core</topic><topic>Earth rotation</topic><topic>Elementary Particles</topic><topic>EXCITATION</topic><topic>EXPANSION</topic><topic>LAYERS</topic><topic>LIQUIDS</topic><topic>Nonlinear</topic><topic>Oceans</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLANETS</topic><topic>PRANDTL NUMBER</topic><topic>Quantum Field Theory</topic><topic>RAYLEIGH NUMBER</topic><topic>Relativity Theory</topic><topic>ROTATION</topic><topic>Scaling</topic><topic>Soft Matter Physics</topic><topic>Solid State Physics</topic><topic>STARS</topic><topic>Statistical</topic><topic>Thermal expansion</topic><topic>THICKNESS</topic><topic>Transport properties</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starchenko, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starchenko, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling and excitation of combined convection in a rapidly rotating plane layer</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>124</volume><issue>2</issue><spage>352</spage><epage>357</epage><pages>352-357</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (
s
) and the ratio thermal convection/compositional convection (
r
). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10
–3
substitutes for the generally accepted Ekman number (
E
~ 10
–15
) and
s
~ 10
–6
substitutes for the inverse Rayleigh number 1/Ra ~ 10
–30
. It is found that, at turbulent transport coefficients, number
s
and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers
s
(which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776117020091</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2017-02, Vol.124 (2), p.352-357 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22617059 |
source | SpringerLink Journals - AutoHoldings |
subjects | ASYMPTOTIC SOLUTIONS Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVECTION Core (Geology) DISPERSION RELATIONS DISPERSIONS Dissipation Earth core Earth rotation Elementary Particles EXCITATION EXPANSION LAYERS LIQUIDS Nonlinear Oceans Particle and Nuclear Physics Physics Physics and Astronomy PLANETS PRANDTL NUMBER Quantum Field Theory RAYLEIGH NUMBER Relativity Theory ROTATION Scaling Soft Matter Physics Solid State Physics STARS Statistical Thermal expansion THICKNESS Transport properties Turbulence |
title | Scaling and excitation of combined convection in a rapidly rotating plane layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20and%20excitation%20of%20combined%20convection%20in%20a%20rapidly%20rotating%20plane%20layer&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Starchenko,%20S.%20V.&rft.date=2017-02-01&rft.volume=124&rft.issue=2&rft.spage=352&rft.epage=357&rft.pages=352-357&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776117020091&rft_dat=%3Cgale_osti_%3EA499178956%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880744486&rft_id=info:pmid/&rft_galeid=A499178956&rfr_iscdi=true |