Characterization of the photocurrents generated by the laser of atomic force microscopes

The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-08, Vol.87 (8), p.083703-083703
Hauptverfasser: Ji, Yanfeng, Hui, Fei, Shi, Yuanyuan, Iglesias, Vanessa, Lewis, David, Niu, Jiebin, Long, Shibing, Liu, Ming, Hofer, Alexander, Frammelsberger, Werner, Benstetter, Guenther, Scheuermann, Andrew, McIntyre, Paul C., Lanza, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083703
container_issue 8
container_start_page 083703
container_title Review of scientific instruments
container_volume 87
creator Ji, Yanfeng
Hui, Fei
Shi, Yuanyuan
Iglesias, Vanessa
Lewis, David
Niu, Jiebin
Long, Shibing
Liu, Ming
Hofer, Alexander
Frammelsberger, Werner
Benstetter, Guenther
Scheuermann, Andrew
McIntyre, Paul C.
Lanza, Mario
description The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.
doi_str_mv 10.1063/1.4960597
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22597683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816636324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</originalsourceid><addsrcrecordid>eNp90U9r2zAYBnBRNto03WFfYBh2aQtO9UqKZB9HaLdCoJcWehPK69eLQ2J5kjxoP32dP0tPnS4S6MeDXj2MfQU-Aa7lDUxUqfm0NCdsBLwoc6OF_MRGnEuVa6OKM3Ye44oPawpwys6EmRYGhBmx59nSBYeJQvPqUuPbzNdZWlLWLX3y2IdAbYrZb2opuERVtnjZXa9dpLC1LvlNg1ntA1I2nIKP6DuKF-xz7daRvhz2MXu6u32c_crnDz_vZz_mOSqAlCMp4KV0zi2MQa6o4kIaraqy1gaFAVeBLrkqFNRUVbUoEJ1AFAWhdguUY_Z9n-tjamzEJhEu0bctYbJCDJ-iCzmoy73qgv_TU0x200Sk9dq15PtooQCtpZZCvQce6cr3oR1msAIEGKmUMoO62qvtwDFQbbvQbFx4scDtthQL9lDKYL8dEvvFhqqj_NfCAK73YPv8XQv_TfsQ__XhHdququUbG7Gisw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121734447</pqid></control><display><type>article</type><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</creator><creatorcontrib>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</creatorcontrib><description>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4960597</identifier><identifier>PMID: 27587127</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic force microscopes ; ATOMIC FORCE MICROSCOPY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Deflection ; DEPTH ; DISTURBANCES ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; LASERS ; METALS ; Microscopes ; NANOSTRUCTURES ; PERTURBATION THEORY ; PHOTOCURRENTS ; Scientific apparatus &amp; instruments ; SEMICONDUCTOR MATERIALS ; SIGNALS ; SURFACES ; TOPOGRAPHY ; TUNING</subject><ispartof>Review of scientific instruments, 2016-08, Vol.87 (8), p.083703-083703</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</citedby><cites>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</cites><orcidid>0000-0001-5831-0974 ; 0000-0003-4756-8632 ; 0000-0002-4253-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4960597$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27587127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22597683$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Iglesias, Vanessa</creatorcontrib><creatorcontrib>Lewis, David</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hofer, Alexander</creatorcontrib><creatorcontrib>Frammelsberger, Werner</creatorcontrib><creatorcontrib>Benstetter, Guenther</creatorcontrib><creatorcontrib>Scheuermann, Andrew</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</description><subject>Atomic force microscopes</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Deflection</subject><subject>DEPTH</subject><subject>DISTURBANCES</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>LASERS</subject><subject>METALS</subject><subject>Microscopes</subject><subject>NANOSTRUCTURES</subject><subject>PERTURBATION THEORY</subject><subject>PHOTOCURRENTS</subject><subject>Scientific apparatus &amp; instruments</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SIGNALS</subject><subject>SURFACES</subject><subject>TOPOGRAPHY</subject><subject>TUNING</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U9r2zAYBnBRNto03WFfYBh2aQtO9UqKZB9HaLdCoJcWehPK69eLQ2J5kjxoP32dP0tPnS4S6MeDXj2MfQU-Aa7lDUxUqfm0NCdsBLwoc6OF_MRGnEuVa6OKM3Ye44oPawpwys6EmRYGhBmx59nSBYeJQvPqUuPbzNdZWlLWLX3y2IdAbYrZb2opuERVtnjZXa9dpLC1LvlNg1ntA1I2nIKP6DuKF-xz7daRvhz2MXu6u32c_crnDz_vZz_mOSqAlCMp4KV0zi2MQa6o4kIaraqy1gaFAVeBLrkqFNRUVbUoEJ1AFAWhdguUY_Z9n-tjamzEJhEu0bctYbJCDJ-iCzmoy73qgv_TU0x200Sk9dq15PtooQCtpZZCvQce6cr3oR1msAIEGKmUMoO62qvtwDFQbbvQbFx4scDtthQL9lDKYL8dEvvFhqqj_NfCAK73YPv8XQv_TfsQ__XhHdququUbG7Gisw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Ji, Yanfeng</creator><creator>Hui, Fei</creator><creator>Shi, Yuanyuan</creator><creator>Iglesias, Vanessa</creator><creator>Lewis, David</creator><creator>Niu, Jiebin</creator><creator>Long, Shibing</creator><creator>Liu, Ming</creator><creator>Hofer, Alexander</creator><creator>Frammelsberger, Werner</creator><creator>Benstetter, Guenther</creator><creator>Scheuermann, Andrew</creator><creator>McIntyre, Paul C.</creator><creator>Lanza, Mario</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5831-0974</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid><orcidid>https://orcid.org/0000-0002-4253-222X</orcidid></search><sort><creationdate>20160801</creationdate><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><author>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic force microscopes</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Deflection</topic><topic>DEPTH</topic><topic>DISTURBANCES</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>LASERS</topic><topic>METALS</topic><topic>Microscopes</topic><topic>NANOSTRUCTURES</topic><topic>PERTURBATION THEORY</topic><topic>PHOTOCURRENTS</topic><topic>Scientific apparatus &amp; instruments</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SIGNALS</topic><topic>SURFACES</topic><topic>TOPOGRAPHY</topic><topic>TUNING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Iglesias, Vanessa</creatorcontrib><creatorcontrib>Lewis, David</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hofer, Alexander</creatorcontrib><creatorcontrib>Frammelsberger, Werner</creatorcontrib><creatorcontrib>Benstetter, Guenther</creatorcontrib><creatorcontrib>Scheuermann, Andrew</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yanfeng</au><au>Hui, Fei</au><au>Shi, Yuanyuan</au><au>Iglesias, Vanessa</au><au>Lewis, David</au><au>Niu, Jiebin</au><au>Long, Shibing</au><au>Liu, Ming</au><au>Hofer, Alexander</au><au>Frammelsberger, Werner</au><au>Benstetter, Guenther</au><au>Scheuermann, Andrew</au><au>McIntyre, Paul C.</au><au>Lanza, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the photocurrents generated by the laser of atomic force microscopes</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>87</volume><issue>8</issue><spage>083703</spage><epage>083703</epage><pages>083703-083703</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27587127</pmid><doi>10.1063/1.4960597</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5831-0974</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid><orcidid>https://orcid.org/0000-0002-4253-222X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2016-08, Vol.87 (8), p.083703-083703
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22597683
source AIP Journals Complete; Alma/SFX Local Collection
subjects Atomic force microscopes
ATOMIC FORCE MICROSCOPY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Deflection
DEPTH
DISTURBANCES
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
LASERS
METALS
Microscopes
NANOSTRUCTURES
PERTURBATION THEORY
PHOTOCURRENTS
Scientific apparatus & instruments
SEMICONDUCTOR MATERIALS
SIGNALS
SURFACES
TOPOGRAPHY
TUNING
title Characterization of the photocurrents generated by the laser of atomic force microscopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20photocurrents%20generated%20by%20the%20laser%20of%20atomic%20force%20microscopes&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ji,%20Yanfeng&rft.date=2016-08-01&rft.volume=87&rft.issue=8&rft.spage=083703&rft.epage=083703&rft.pages=083703-083703&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4960597&rft_dat=%3Cproquest_osti_%3E1816636324%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121734447&rft_id=info:pmid/27587127&rfr_iscdi=true