Characterization of the photocurrents generated by the laser of atomic force microscopes
The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2016-08, Vol.87 (8), p.083703-083703 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 083703 |
---|---|
container_issue | 8 |
container_start_page | 083703 |
container_title | Review of scientific instruments |
container_volume | 87 |
creator | Ji, Yanfeng Hui, Fei Shi, Yuanyuan Iglesias, Vanessa Lewis, David Niu, Jiebin Long, Shibing Liu, Ming Hofer, Alexander Frammelsberger, Werner Benstetter, Guenther Scheuermann, Andrew McIntyre, Paul C. Lanza, Mario |
description | The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem. |
doi_str_mv | 10.1063/1.4960597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22597683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816636324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</originalsourceid><addsrcrecordid>eNp90U9r2zAYBnBRNto03WFfYBh2aQtO9UqKZB9HaLdCoJcWehPK69eLQ2J5kjxoP32dP0tPnS4S6MeDXj2MfQU-Aa7lDUxUqfm0NCdsBLwoc6OF_MRGnEuVa6OKM3Ye44oPawpwys6EmRYGhBmx59nSBYeJQvPqUuPbzNdZWlLWLX3y2IdAbYrZb2opuERVtnjZXa9dpLC1LvlNg1ntA1I2nIKP6DuKF-xz7daRvhz2MXu6u32c_crnDz_vZz_mOSqAlCMp4KV0zi2MQa6o4kIaraqy1gaFAVeBLrkqFNRUVbUoEJ1AFAWhdguUY_Z9n-tjamzEJhEu0bctYbJCDJ-iCzmoy73qgv_TU0x200Sk9dq15PtooQCtpZZCvQce6cr3oR1msAIEGKmUMoO62qvtwDFQbbvQbFx4scDtthQL9lDKYL8dEvvFhqqj_NfCAK73YPv8XQv_TfsQ__XhHdququUbG7Gisw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121734447</pqid></control><display><type>article</type><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</creator><creatorcontrib>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</creatorcontrib><description>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4960597</identifier><identifier>PMID: 27587127</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic force microscopes ; ATOMIC FORCE MICROSCOPY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Deflection ; DEPTH ; DISTURBANCES ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; LASERS ; METALS ; Microscopes ; NANOSTRUCTURES ; PERTURBATION THEORY ; PHOTOCURRENTS ; Scientific apparatus & instruments ; SEMICONDUCTOR MATERIALS ; SIGNALS ; SURFACES ; TOPOGRAPHY ; TUNING</subject><ispartof>Review of scientific instruments, 2016-08, Vol.87 (8), p.083703-083703</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</citedby><cites>FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</cites><orcidid>0000-0001-5831-0974 ; 0000-0003-4756-8632 ; 0000-0002-4253-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4960597$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27587127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22597683$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Iglesias, Vanessa</creatorcontrib><creatorcontrib>Lewis, David</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hofer, Alexander</creatorcontrib><creatorcontrib>Frammelsberger, Werner</creatorcontrib><creatorcontrib>Benstetter, Guenther</creatorcontrib><creatorcontrib>Scheuermann, Andrew</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</description><subject>Atomic force microscopes</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Deflection</subject><subject>DEPTH</subject><subject>DISTURBANCES</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>LASERS</subject><subject>METALS</subject><subject>Microscopes</subject><subject>NANOSTRUCTURES</subject><subject>PERTURBATION THEORY</subject><subject>PHOTOCURRENTS</subject><subject>Scientific apparatus & instruments</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SIGNALS</subject><subject>SURFACES</subject><subject>TOPOGRAPHY</subject><subject>TUNING</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U9r2zAYBnBRNto03WFfYBh2aQtO9UqKZB9HaLdCoJcWehPK69eLQ2J5kjxoP32dP0tPnS4S6MeDXj2MfQU-Aa7lDUxUqfm0NCdsBLwoc6OF_MRGnEuVa6OKM3Ye44oPawpwys6EmRYGhBmx59nSBYeJQvPqUuPbzNdZWlLWLX3y2IdAbYrZb2opuERVtnjZXa9dpLC1LvlNg1ntA1I2nIKP6DuKF-xz7daRvhz2MXu6u32c_crnDz_vZz_mOSqAlCMp4KV0zi2MQa6o4kIaraqy1gaFAVeBLrkqFNRUVbUoEJ1AFAWhdguUY_Z9n-tjamzEJhEu0bctYbJCDJ-iCzmoy73qgv_TU0x200Sk9dq15PtooQCtpZZCvQce6cr3oR1msAIEGKmUMoO62qvtwDFQbbvQbFx4scDtthQL9lDKYL8dEvvFhqqj_NfCAK73YPv8XQv_TfsQ__XhHdququUbG7Gisw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Ji, Yanfeng</creator><creator>Hui, Fei</creator><creator>Shi, Yuanyuan</creator><creator>Iglesias, Vanessa</creator><creator>Lewis, David</creator><creator>Niu, Jiebin</creator><creator>Long, Shibing</creator><creator>Liu, Ming</creator><creator>Hofer, Alexander</creator><creator>Frammelsberger, Werner</creator><creator>Benstetter, Guenther</creator><creator>Scheuermann, Andrew</creator><creator>McIntyre, Paul C.</creator><creator>Lanza, Mario</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5831-0974</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid><orcidid>https://orcid.org/0000-0002-4253-222X</orcidid></search><sort><creationdate>20160801</creationdate><title>Characterization of the photocurrents generated by the laser of atomic force microscopes</title><author>Ji, Yanfeng ; Hui, Fei ; Shi, Yuanyuan ; Iglesias, Vanessa ; Lewis, David ; Niu, Jiebin ; Long, Shibing ; Liu, Ming ; Hofer, Alexander ; Frammelsberger, Werner ; Benstetter, Guenther ; Scheuermann, Andrew ; McIntyre, Paul C. ; Lanza, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ce41093aaab77c04ed023764d9f67c271ad16904841feddf28cca2cc28ec6abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic force microscopes</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Deflection</topic><topic>DEPTH</topic><topic>DISTURBANCES</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>LASERS</topic><topic>METALS</topic><topic>Microscopes</topic><topic>NANOSTRUCTURES</topic><topic>PERTURBATION THEORY</topic><topic>PHOTOCURRENTS</topic><topic>Scientific apparatus & instruments</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SIGNALS</topic><topic>SURFACES</topic><topic>TOPOGRAPHY</topic><topic>TUNING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Iglesias, Vanessa</creatorcontrib><creatorcontrib>Lewis, David</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hofer, Alexander</creatorcontrib><creatorcontrib>Frammelsberger, Werner</creatorcontrib><creatorcontrib>Benstetter, Guenther</creatorcontrib><creatorcontrib>Scheuermann, Andrew</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yanfeng</au><au>Hui, Fei</au><au>Shi, Yuanyuan</au><au>Iglesias, Vanessa</au><au>Lewis, David</au><au>Niu, Jiebin</au><au>Long, Shibing</au><au>Liu, Ming</au><au>Hofer, Alexander</au><au>Frammelsberger, Werner</au><au>Benstetter, Guenther</au><au>Scheuermann, Andrew</au><au>McIntyre, Paul C.</au><au>Lanza, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the photocurrents generated by the laser of atomic force microscopes</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>87</volume><issue>8</issue><spage>083703</spage><epage>083703</epage><pages>083703-083703</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27587127</pmid><doi>10.1063/1.4960597</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5831-0974</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid><orcidid>https://orcid.org/0000-0002-4253-222X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2016-08, Vol.87 (8), p.083703-083703 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_22597683 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Atomic force microscopes ATOMIC FORCE MICROSCOPY CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Deflection DEPTH DISTURBANCES INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY LASERS METALS Microscopes NANOSTRUCTURES PERTURBATION THEORY PHOTOCURRENTS Scientific apparatus & instruments SEMICONDUCTOR MATERIALS SIGNALS SURFACES TOPOGRAPHY TUNING |
title | Characterization of the photocurrents generated by the laser of atomic force microscopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20photocurrents%20generated%20by%20the%20laser%20of%20atomic%20force%20microscopes&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ji,%20Yanfeng&rft.date=2016-08-01&rft.volume=87&rft.issue=8&rft.spage=083703&rft.epage=083703&rft.pages=083703-083703&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4960597&rft_dat=%3Cproquest_osti_%3E1816636324%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121734447&rft_id=info:pmid/27587127&rfr_iscdi=true |