Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy
GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepar...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-05, Vol.119 (17) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Aschenbrenner, T. Schowalter, M. Mehrtens, T. Müller-Caspary, K. Fikry, M. Heinz, D. Tischer, I. Madel, M. Thonke, K. Hommel, D. Scholz, F. Rosenauer, A. |
description | GaN
nanotubes with coaxial InGaN
quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN
quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements. |
doi_str_mv | 10.1063/1.4948385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22596948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121826089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</originalsourceid><addsrcrecordid>eNqdkE1P3DAQhq2qlbqlHPgHlnoCKeCJYyc-olX5kBBc2rPlOA41SuysxynsvyfRIrhzmvfw6J2Zh5ATYOfAJL-A80pVDW_EF7IB1qiiFoJ9JRvGSigaVavv5AfiE2MADVcbstvGcYros4-BmmCGPXqksac2mhdvhmFPH1N8DvQ2XJt7Os5D9nQ3m5DnkT67YUA6ow-PFK0JYQ05mYCjR1wb3eBsTksYvU0RbZz2P8m33gzojt_mEfl79fvP9qa4e7i-3V7eFZaDyEUljeuqBlpbg5S9VLKsW9WWDbO1aGvhuLWqFSBFBwYqx3srllc575TjHav5Efl16I2YvUbrs7P_bAxhuUiXpVByFfVOTSnuZodZP8U5LR5Ql1BCU8pF4kKdHqj1CUyu11Pyo0l7DUyv3jXoN-8Le3Zg15Vm9fo5-H9MH6Ceup6_AmYKko8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121826089</pqid></control><display><type>article</type><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</creator><creatorcontrib>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</creatorcontrib><description>GaN
nanotubes with coaxial InGaN
quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN
quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4948385</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CATHODOLUMINESCENCE ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALLOGRAPHY ; ELECTRONS ; GALLIUM NITRIDES ; INDIUM ; Indium gallium nitrides ; INDIUM NITRIDES ; Multi Quantum Wells ; NANOTUBES ; Planes ; QUANTUM WELLS ; Scanning electron microscopy ; Scanning transmission electron microscopy ; SIGNALS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of applied physics, 2016-05, Vol.119 (17)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</cites><orcidid>0000-0003-3499-9265 ; 0000-0002-3428-2662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4948385$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aschenbrenner, T.</creatorcontrib><creatorcontrib>Schowalter, M.</creatorcontrib><creatorcontrib>Mehrtens, T.</creatorcontrib><creatorcontrib>Müller-Caspary, K.</creatorcontrib><creatorcontrib>Fikry, M.</creatorcontrib><creatorcontrib>Heinz, D.</creatorcontrib><creatorcontrib>Tischer, I.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><title>Journal of applied physics</title><description>GaN
nanotubes with coaxial InGaN
quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN
quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</description><subject>Applied physics</subject><subject>CATHODOLUMINESCENCE</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALLOGRAPHY</subject><subject>ELECTRONS</subject><subject>GALLIUM NITRIDES</subject><subject>INDIUM</subject><subject>Indium gallium nitrides</subject><subject>INDIUM NITRIDES</subject><subject>Multi Quantum Wells</subject><subject>NANOTUBES</subject><subject>Planes</subject><subject>QUANTUM WELLS</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>SIGNALS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1P3DAQhq2qlbqlHPgHlnoCKeCJYyc-olX5kBBc2rPlOA41SuysxynsvyfRIrhzmvfw6J2Zh5ATYOfAJL-A80pVDW_EF7IB1qiiFoJ9JRvGSigaVavv5AfiE2MADVcbstvGcYros4-BmmCGPXqksac2mhdvhmFPH1N8DvQ2XJt7Os5D9nQ3m5DnkT67YUA6ow-PFK0JYQ05mYCjR1wb3eBsTksYvU0RbZz2P8m33gzojt_mEfl79fvP9qa4e7i-3V7eFZaDyEUljeuqBlpbg5S9VLKsW9WWDbO1aGvhuLWqFSBFBwYqx3srllc575TjHav5Efl16I2YvUbrs7P_bAxhuUiXpVByFfVOTSnuZodZP8U5LR5Ql1BCU8pF4kKdHqj1CUyu11Pyo0l7DUyv3jXoN-8Le3Zg15Vm9fo5-H9MH6Ceup6_AmYKko8</recordid><startdate>20160507</startdate><enddate>20160507</enddate><creator>Aschenbrenner, T.</creator><creator>Schowalter, M.</creator><creator>Mehrtens, T.</creator><creator>Müller-Caspary, K.</creator><creator>Fikry, M.</creator><creator>Heinz, D.</creator><creator>Tischer, I.</creator><creator>Madel, M.</creator><creator>Thonke, K.</creator><creator>Hommel, D.</creator><creator>Scholz, F.</creator><creator>Rosenauer, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3499-9265</orcidid><orcidid>https://orcid.org/0000-0002-3428-2662</orcidid></search><sort><creationdate>20160507</creationdate><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><author>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CATHODOLUMINESCENCE</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALLOGRAPHY</topic><topic>ELECTRONS</topic><topic>GALLIUM NITRIDES</topic><topic>INDIUM</topic><topic>Indium gallium nitrides</topic><topic>INDIUM NITRIDES</topic><topic>Multi Quantum Wells</topic><topic>NANOTUBES</topic><topic>Planes</topic><topic>QUANTUM WELLS</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>SIGNALS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aschenbrenner, T.</creatorcontrib><creatorcontrib>Schowalter, M.</creatorcontrib><creatorcontrib>Mehrtens, T.</creatorcontrib><creatorcontrib>Müller-Caspary, K.</creatorcontrib><creatorcontrib>Fikry, M.</creatorcontrib><creatorcontrib>Heinz, D.</creatorcontrib><creatorcontrib>Tischer, I.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschenbrenner, T.</au><au>Schowalter, M.</au><au>Mehrtens, T.</au><au>Müller-Caspary, K.</au><au>Fikry, M.</au><au>Heinz, D.</au><au>Tischer, I.</au><au>Madel, M.</au><au>Thonke, K.</au><au>Hommel, D.</au><au>Scholz, F.</au><au>Rosenauer, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2016-05-07</date><risdate>2016</risdate><volume>119</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>GaN
nanotubes with coaxial InGaN
quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN
quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948385</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3499-9265</orcidid><orcidid>https://orcid.org/0000-0002-3428-2662</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-05, Vol.119 (17) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22596948 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics CATHODOLUMINESCENCE CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTALLOGRAPHY ELECTRONS GALLIUM NITRIDES INDIUM Indium gallium nitrides INDIUM NITRIDES Multi Quantum Wells NANOTUBES Planes QUANTUM WELLS Scanning electron microscopy Scanning transmission electron microscopy SIGNALS TRANSMISSION ELECTRON MICROSCOPY |
title | Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20analysis%20of%20coaxially%20grown%20InGaN%20multi%20quantum%20wells%20using%20scanning%20transmission%20electron%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aschenbrenner,%20T.&rft.date=2016-05-07&rft.volume=119&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4948385&rft_dat=%3Cproquest_osti_%3E2121826089%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121826089&rft_id=info:pmid/&rfr_iscdi=true |