Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy

GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-05, Vol.119 (17)
Hauptverfasser: Aschenbrenner, T., Schowalter, M., Mehrtens, T., Müller-Caspary, K., Fikry, M., Heinz, D., Tischer, I., Madel, M., Thonke, K., Hommel, D., Scholz, F., Rosenauer, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 119
creator Aschenbrenner, T.
Schowalter, M.
Mehrtens, T.
Müller-Caspary, K.
Fikry, M.
Heinz, D.
Tischer, I.
Madel, M.
Thonke, K.
Hommel, D.
Scholz, F.
Rosenauer, A.
description GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.
doi_str_mv 10.1063/1.4948385
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22596948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121826089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</originalsourceid><addsrcrecordid>eNqdkE1P3DAQhq2qlbqlHPgHlnoCKeCJYyc-olX5kBBc2rPlOA41SuysxynsvyfRIrhzmvfw6J2Zh5ATYOfAJL-A80pVDW_EF7IB1qiiFoJ9JRvGSigaVavv5AfiE2MADVcbstvGcYros4-BmmCGPXqksac2mhdvhmFPH1N8DvQ2XJt7Os5D9nQ3m5DnkT67YUA6ow-PFK0JYQ05mYCjR1wb3eBsTksYvU0RbZz2P8m33gzojt_mEfl79fvP9qa4e7i-3V7eFZaDyEUljeuqBlpbg5S9VLKsW9WWDbO1aGvhuLWqFSBFBwYqx3srllc575TjHav5Efl16I2YvUbrs7P_bAxhuUiXpVByFfVOTSnuZodZP8U5LR5Ql1BCU8pF4kKdHqj1CUyu11Pyo0l7DUyv3jXoN-8Le3Zg15Vm9fo5-H9MH6Ceup6_AmYKko8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121826089</pqid></control><display><type>article</type><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</creator><creatorcontrib>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</creatorcontrib><description>GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4948385</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CATHODOLUMINESCENCE ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALLOGRAPHY ; ELECTRONS ; GALLIUM NITRIDES ; INDIUM ; Indium gallium nitrides ; INDIUM NITRIDES ; Multi Quantum Wells ; NANOTUBES ; Planes ; QUANTUM WELLS ; Scanning electron microscopy ; Scanning transmission electron microscopy ; SIGNALS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of applied physics, 2016-05, Vol.119 (17)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</cites><orcidid>0000-0003-3499-9265 ; 0000-0002-3428-2662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4948385$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aschenbrenner, T.</creatorcontrib><creatorcontrib>Schowalter, M.</creatorcontrib><creatorcontrib>Mehrtens, T.</creatorcontrib><creatorcontrib>Müller-Caspary, K.</creatorcontrib><creatorcontrib>Fikry, M.</creatorcontrib><creatorcontrib>Heinz, D.</creatorcontrib><creatorcontrib>Tischer, I.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><title>Journal of applied physics</title><description>GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</description><subject>Applied physics</subject><subject>CATHODOLUMINESCENCE</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALLOGRAPHY</subject><subject>ELECTRONS</subject><subject>GALLIUM NITRIDES</subject><subject>INDIUM</subject><subject>Indium gallium nitrides</subject><subject>INDIUM NITRIDES</subject><subject>Multi Quantum Wells</subject><subject>NANOTUBES</subject><subject>Planes</subject><subject>QUANTUM WELLS</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>SIGNALS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1P3DAQhq2qlbqlHPgHlnoCKeCJYyc-olX5kBBc2rPlOA41SuysxynsvyfRIrhzmvfw6J2Zh5ATYOfAJL-A80pVDW_EF7IB1qiiFoJ9JRvGSigaVavv5AfiE2MADVcbstvGcYros4-BmmCGPXqksac2mhdvhmFPH1N8DvQ2XJt7Os5D9nQ3m5DnkT67YUA6ow-PFK0JYQ05mYCjR1wb3eBsTksYvU0RbZz2P8m33gzojt_mEfl79fvP9qa4e7i-3V7eFZaDyEUljeuqBlpbg5S9VLKsW9WWDbO1aGvhuLWqFSBFBwYqx3srllc575TjHav5Efl16I2YvUbrs7P_bAxhuUiXpVByFfVOTSnuZodZP8U5LR5Ql1BCU8pF4kKdHqj1CUyu11Pyo0l7DUyv3jXoN-8Le3Zg15Vm9fo5-H9MH6Ceup6_AmYKko8</recordid><startdate>20160507</startdate><enddate>20160507</enddate><creator>Aschenbrenner, T.</creator><creator>Schowalter, M.</creator><creator>Mehrtens, T.</creator><creator>Müller-Caspary, K.</creator><creator>Fikry, M.</creator><creator>Heinz, D.</creator><creator>Tischer, I.</creator><creator>Madel, M.</creator><creator>Thonke, K.</creator><creator>Hommel, D.</creator><creator>Scholz, F.</creator><creator>Rosenauer, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3499-9265</orcidid><orcidid>https://orcid.org/0000-0002-3428-2662</orcidid></search><sort><creationdate>20160507</creationdate><title>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</title><author>Aschenbrenner, T. ; Schowalter, M. ; Mehrtens, T. ; Müller-Caspary, K. ; Fikry, M. ; Heinz, D. ; Tischer, I. ; Madel, M. ; Thonke, K. ; Hommel, D. ; Scholz, F. ; Rosenauer, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-46aed481bc7166f69627b9b280c75b75e3cc9b5165d1a14e3fc555033d9e3d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CATHODOLUMINESCENCE</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALLOGRAPHY</topic><topic>ELECTRONS</topic><topic>GALLIUM NITRIDES</topic><topic>INDIUM</topic><topic>Indium gallium nitrides</topic><topic>INDIUM NITRIDES</topic><topic>Multi Quantum Wells</topic><topic>NANOTUBES</topic><topic>Planes</topic><topic>QUANTUM WELLS</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>SIGNALS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aschenbrenner, T.</creatorcontrib><creatorcontrib>Schowalter, M.</creatorcontrib><creatorcontrib>Mehrtens, T.</creatorcontrib><creatorcontrib>Müller-Caspary, K.</creatorcontrib><creatorcontrib>Fikry, M.</creatorcontrib><creatorcontrib>Heinz, D.</creatorcontrib><creatorcontrib>Tischer, I.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschenbrenner, T.</au><au>Schowalter, M.</au><au>Mehrtens, T.</au><au>Müller-Caspary, K.</au><au>Fikry, M.</au><au>Heinz, D.</au><au>Tischer, I.</au><au>Madel, M.</au><au>Thonke, K.</au><au>Hommel, D.</au><au>Scholz, F.</au><au>Rosenauer, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2016-05-07</date><risdate>2016</risdate><volume>119</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948385</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3499-9265</orcidid><orcidid>https://orcid.org/0000-0002-3428-2662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-05, Vol.119 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22596948
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
CATHODOLUMINESCENCE
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTALLOGRAPHY
ELECTRONS
GALLIUM NITRIDES
INDIUM
Indium gallium nitrides
INDIUM NITRIDES
Multi Quantum Wells
NANOTUBES
Planes
QUANTUM WELLS
Scanning electron microscopy
Scanning transmission electron microscopy
SIGNALS
TRANSMISSION ELECTRON MICROSCOPY
title Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20analysis%20of%20coaxially%20grown%20InGaN%20multi%20quantum%20wells%20using%20scanning%20transmission%20electron%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aschenbrenner,%20T.&rft.date=2016-05-07&rft.volume=119&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4948385&rft_dat=%3Cproquest_osti_%3E2121826089%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121826089&rft_id=info:pmid/&rfr_iscdi=true