Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity

We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2016-07, Vol.26 (7), p.073110-073110
Hauptverfasser: Lebedev, M. E., Alfimov, G. L., Malomed, Boris A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 073110
container_issue 7
container_start_page 073110
container_title Chaos (Woodbury, N.Y.)
container_volume 26
creator Lebedev, M. E.
Alfimov, G. L.
Malomed, Boris A.
description We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.
doi_str_mv 10.1063/1.4958710
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22596609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121709506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-39853e41ff9c58a98e177a5395c9443b727720ce29275d8d6ee56906b94fdda3</originalsourceid><addsrcrecordid>eNp90U9vFCEYBvCJ0dh29eAXMCRe1GQqf4YBjqbRatLEQ3snLLzj0jAwBUbdxM_lF_CLOetuuyc9AcnvfQI8TfOC4HOCe_aOnHeKS0Hwo-aUYKla0Uv6eLfnXUs4xifNWSm3GGNCGX_anFDRCY4FPm1-XlezDoCcn9KylBR8TbEgE939Adk0TgF-QEE-oroBFFMMPoLJ6Npu8u9fzsevkBHczab6ZeC7rxs0QfbJeWtC2KIxuTmYCu446-v2WfNkMKHA88O6am4-fri5-NRefbn8fPH-qrWsI7VlSnIGHRkGZbk0SgIRwnCmuFVdx9aCCkGxBaqo4E66HoD3Cvdr1Q3OGbZqXu1jU6leF-sr2I1NMYKtmlKu-h6rRb3eqymnuxlK1aMvFkIwEdJcNJFYMtlz3h0DH-htmnNcnqApoURgxZdaVs2bvbI5lZJh0FP2o8lbTbDe9aaJPvS22JeHxHk9gnuQ90Ut4O0e7K7_95f_m_ZP_C3lI9STG9gfKlSv_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121709506</pqid></control><display><type>article</type><title>Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lebedev, M. E. ; Alfimov, G. L. ; Malomed, Boris A.</creator><creatorcontrib>Lebedev, M. E. ; Alfimov, G. L. ; Malomed, Boris A.</creatorcontrib><description>We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4958710</identifier><identifier>PMID: 27475070</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bose-Einstein condensates ; BOSE-EINSTEIN CONDENSATION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Cubic lattice ; DIPOLES ; Lattices (mathematics) ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematical models ; NONLINEAR OPTICS ; NONLINEAR PROBLEMS ; Nonlinearity ; ONE-DIMENSIONAL CALCULATIONS ; PERIODICITY ; Schrodinger equation ; SCHROEDINGER EQUATION ; Solitary waves</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-07, Vol.26 (7), p.073110-073110</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-39853e41ff9c58a98e177a5395c9443b727720ce29275d8d6ee56906b94fdda3</citedby><cites>FETCH-LOGICAL-c341t-39853e41ff9c58a98e177a5395c9443b727720ce29275d8d6ee56906b94fdda3</cites><orcidid>0000-0001-5323-1847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27475070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22596609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebedev, M. E.</creatorcontrib><creatorcontrib>Alfimov, G. L.</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><title>Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.</description><subject>Bose-Einstein condensates</subject><subject>BOSE-EINSTEIN CONDENSATION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Cubic lattice</subject><subject>DIPOLES</subject><subject>Lattices (mathematics)</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematical models</subject><subject>NONLINEAR OPTICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinearity</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>PERIODICITY</subject><subject>Schrodinger equation</subject><subject>SCHROEDINGER EQUATION</subject><subject>Solitary waves</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U9vFCEYBvCJ0dh29eAXMCRe1GQqf4YBjqbRatLEQ3snLLzj0jAwBUbdxM_lF_CLOetuuyc9AcnvfQI8TfOC4HOCe_aOnHeKS0Hwo-aUYKla0Uv6eLfnXUs4xifNWSm3GGNCGX_anFDRCY4FPm1-XlezDoCcn9KylBR8TbEgE939Adk0TgF-QEE-oroBFFMMPoLJ6Npu8u9fzsevkBHczab6ZeC7rxs0QfbJeWtC2KIxuTmYCu446-v2WfNkMKHA88O6am4-fri5-NRefbn8fPH-qrWsI7VlSnIGHRkGZbk0SgIRwnCmuFVdx9aCCkGxBaqo4E66HoD3Cvdr1Q3OGbZqXu1jU6leF-sr2I1NMYKtmlKu-h6rRb3eqymnuxlK1aMvFkIwEdJcNJFYMtlz3h0DH-htmnNcnqApoURgxZdaVs2bvbI5lZJh0FP2o8lbTbDe9aaJPvS22JeHxHk9gnuQ90Ut4O0e7K7_95f_m_ZP_C3lI9STG9gfKlSv_Q</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Lebedev, M. E.</creator><creator>Alfimov, G. L.</creator><creator>Malomed, Boris A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5323-1847</orcidid></search><sort><creationdate>20160701</creationdate><title>Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity</title><author>Lebedev, M. E. ; Alfimov, G. L. ; Malomed, Boris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-39853e41ff9c58a98e177a5395c9443b727720ce29275d8d6ee56906b94fdda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bose-Einstein condensates</topic><topic>BOSE-EINSTEIN CONDENSATION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Cubic lattice</topic><topic>DIPOLES</topic><topic>Lattices (mathematics)</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematical models</topic><topic>NONLINEAR OPTICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinearity</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>PERIODICITY</topic><topic>Schrodinger equation</topic><topic>SCHROEDINGER EQUATION</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebedev, M. E.</creatorcontrib><creatorcontrib>Alfimov, G. L.</creatorcontrib><creatorcontrib>Malomed, Boris A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebedev, M. E.</au><au>Alfimov, G. L.</au><au>Malomed, Boris A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>26</volume><issue>7</issue><spage>073110</spage><epage>073110</epage><pages>073110-073110</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27475070</pmid><doi>10.1063/1.4958710</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5323-1847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2016-07, Vol.26 (7), p.073110-073110
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22596609
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bose-Einstein condensates
BOSE-EINSTEIN CONDENSATION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Cubic lattice
DIPOLES
Lattices (mathematics)
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Mathematical models
NONLINEAR OPTICS
NONLINEAR PROBLEMS
Nonlinearity
ONE-DIMENSIONAL CALCULATIONS
PERIODICITY
Schrodinger equation
SCHROEDINGER EQUATION
Solitary waves
title Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20dipole%20solitons%20and%20soliton%20complexes%20in%20the%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20periodically%20modulated%20nonlinearity&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lebedev,%20M.%20E.&rft.date=2016-07-01&rft.volume=26&rft.issue=7&rft.spage=073110&rft.epage=073110&rft.pages=073110-073110&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4958710&rft_dat=%3Cproquest_osti_%3E2121709506%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121709506&rft_id=info:pmid/27475070&rfr_iscdi=true