Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method
A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation con...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-04, Vol.119 (15) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Zhang, Zhiqiang Geng, Dalong Wang, Xudong |
description | A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale. |
doi_str_mv | 10.1063/1.4946843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22594619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121873920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWJLvpbo5S_IKCFz2HmE5syjZZk6y2_npTW-xB8JQhPPPOzIPQOSUjSsblNR1Voho3VXmABpQ0oqg5J4doQAijRSNqcYxOYlwQQmlTigFaTVSr-1Yl6x32Bqc54M7Cl4cWdApWY-Vm2LSw2v-AMbmK2DrslPOfNkDEfbTuDSs8A-37roXcZJ1NgHPbElzKOapdRxvxEtLcz07RkVFthLPdO0Qvd7fPk4di-nT_OLmZFrrkPBW8ZrQWzBhCKm0ULwEqrZqaG6hMBRUwU4M2DTDKBHkFToiuDW8UcDPOQsohutjm-pisjDqvpOfaO5dPkIzxbIuKPdUF_95DTHLh-5A3jjIH06YuBSOZutxSOvgYAxjZBbtUYS0pkRv9ksqd_sxebdnNyB-9v_CHD3tQdjPzH_w3-RsIgZUi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873920</pqid></control><display><type>article</type><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</creator><creatorcontrib>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</creatorcontrib><description>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4946843</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ACCURACY ; Applied physics ; BARIUM COMPOUNDS ; Barium titanates ; BENDING ; CAPACITORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Deformation ; DISTRIBUTION ; ELECTRIC POTENTIAL ; Finite element analysis ; FINITE ELEMENT METHOD ; Mathematical analysis ; NANOWIRES ; Parallel plates ; PIEZOELECTRICITY ; TITANATES ; Zinc oxide ; ZINC OXIDES</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</citedby><cites>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4946843$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22594619$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Geng, Dalong</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><title>Journal of applied physics</title><description>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</description><subject>ACCURACY</subject><subject>Applied physics</subject><subject>BARIUM COMPOUNDS</subject><subject>Barium titanates</subject><subject>BENDING</subject><subject>CAPACITORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Deformation</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC POTENTIAL</subject><subject>Finite element analysis</subject><subject>FINITE ELEMENT METHOD</subject><subject>Mathematical analysis</subject><subject>NANOWIRES</subject><subject>Parallel plates</subject><subject>PIEZOELECTRICITY</subject><subject>TITANATES</subject><subject>Zinc oxide</subject><subject>ZINC OXIDES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWJLvpbo5S_IKCFz2HmE5syjZZk6y2_npTW-xB8JQhPPPOzIPQOSUjSsblNR1Voho3VXmABpQ0oqg5J4doQAijRSNqcYxOYlwQQmlTigFaTVSr-1Yl6x32Bqc54M7Cl4cWdApWY-Vm2LSw2v-AMbmK2DrslPOfNkDEfbTuDSs8A-37roXcZJ1NgHPbElzKOapdRxvxEtLcz07RkVFthLPdO0Qvd7fPk4di-nT_OLmZFrrkPBW8ZrQWzBhCKm0ULwEqrZqaG6hMBRUwU4M2DTDKBHkFToiuDW8UcDPOQsohutjm-pisjDqvpOfaO5dPkIzxbIuKPdUF_95DTHLh-5A3jjIH06YuBSOZutxSOvgYAxjZBbtUYS0pkRv9ksqd_sxebdnNyB-9v_CHD3tQdjPzH_w3-RsIgZUi</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Zhang, Zhiqiang</creator><creator>Geng, Dalong</creator><creator>Wang, Xudong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160421</creationdate><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><author>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ACCURACY</topic><topic>Applied physics</topic><topic>BARIUM COMPOUNDS</topic><topic>Barium titanates</topic><topic>BENDING</topic><topic>CAPACITORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Deformation</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC POTENTIAL</topic><topic>Finite element analysis</topic><topic>FINITE ELEMENT METHOD</topic><topic>Mathematical analysis</topic><topic>NANOWIRES</topic><topic>Parallel plates</topic><topic>PIEZOELECTRICITY</topic><topic>TITANATES</topic><topic>Zinc oxide</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Geng, Dalong</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhiqiang</au><au>Geng, Dalong</au><au>Wang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>119</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4946843</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-04, Vol.119 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22594619 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ACCURACY Applied physics BARIUM COMPOUNDS Barium titanates BENDING CAPACITORS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Deformation DISTRIBUTION ELECTRIC POTENTIAL Finite element analysis FINITE ELEMENT METHOD Mathematical analysis NANOWIRES Parallel plates PIEZOELECTRICITY TITANATES Zinc oxide ZINC OXIDES |
title | Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20piezoelectric%20and%20flexoelectric%20effects%20in%20nanowires%20using%20a%20decoupled%20finite%20element%20analysis%20method&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20Zhiqiang&rft.date=2016-04-21&rft.volume=119&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4946843&rft_dat=%3Cproquest_osti_%3E2121873920%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121873920&rft_id=info:pmid/&rfr_iscdi=true |