Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method

A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-04, Vol.119 (15)
Hauptverfasser: Zhang, Zhiqiang, Geng, Dalong, Wang, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 119
creator Zhang, Zhiqiang
Geng, Dalong
Wang, Xudong
description A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.
doi_str_mv 10.1063/1.4946843
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22594619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121873920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWJLvpbo5S_IKCFz2HmE5syjZZk6y2_npTW-xB8JQhPPPOzIPQOSUjSsblNR1Voho3VXmABpQ0oqg5J4doQAijRSNqcYxOYlwQQmlTigFaTVSr-1Yl6x32Bqc54M7Cl4cWdApWY-Vm2LSw2v-AMbmK2DrslPOfNkDEfbTuDSs8A-37roXcZJ1NgHPbElzKOapdRxvxEtLcz07RkVFthLPdO0Qvd7fPk4di-nT_OLmZFrrkPBW8ZrQWzBhCKm0ULwEqrZqaG6hMBRUwU4M2DTDKBHkFToiuDW8UcDPOQsohutjm-pisjDqvpOfaO5dPkIzxbIuKPdUF_95DTHLh-5A3jjIH06YuBSOZutxSOvgYAxjZBbtUYS0pkRv9ksqd_sxebdnNyB-9v_CHD3tQdjPzH_w3-RsIgZUi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873920</pqid></control><display><type>article</type><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</creator><creatorcontrib>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</creatorcontrib><description>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4946843</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ACCURACY ; Applied physics ; BARIUM COMPOUNDS ; Barium titanates ; BENDING ; CAPACITORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Deformation ; DISTRIBUTION ; ELECTRIC POTENTIAL ; Finite element analysis ; FINITE ELEMENT METHOD ; Mathematical analysis ; NANOWIRES ; Parallel plates ; PIEZOELECTRICITY ; TITANATES ; Zinc oxide ; ZINC OXIDES</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</citedby><cites>FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4946843$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22594619$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Geng, Dalong</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><title>Journal of applied physics</title><description>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</description><subject>ACCURACY</subject><subject>Applied physics</subject><subject>BARIUM COMPOUNDS</subject><subject>Barium titanates</subject><subject>BENDING</subject><subject>CAPACITORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Deformation</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC POTENTIAL</subject><subject>Finite element analysis</subject><subject>FINITE ELEMENT METHOD</subject><subject>Mathematical analysis</subject><subject>NANOWIRES</subject><subject>Parallel plates</subject><subject>PIEZOELECTRICITY</subject><subject>TITANATES</subject><subject>Zinc oxide</subject><subject>ZINC OXIDES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWJLvpbo5S_IKCFz2HmE5syjZZk6y2_npTW-xB8JQhPPPOzIPQOSUjSsblNR1Voho3VXmABpQ0oqg5J4doQAijRSNqcYxOYlwQQmlTigFaTVSr-1Yl6x32Bqc54M7Cl4cWdApWY-Vm2LSw2v-AMbmK2DrslPOfNkDEfbTuDSs8A-37roXcZJ1NgHPbElzKOapdRxvxEtLcz07RkVFthLPdO0Qvd7fPk4di-nT_OLmZFrrkPBW8ZrQWzBhCKm0ULwEqrZqaG6hMBRUwU4M2DTDKBHkFToiuDW8UcDPOQsohutjm-pisjDqvpOfaO5dPkIzxbIuKPdUF_95DTHLh-5A3jjIH06YuBSOZutxSOvgYAxjZBbtUYS0pkRv9ksqd_sxebdnNyB-9v_CHD3tQdjPzH_w3-RsIgZUi</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Zhang, Zhiqiang</creator><creator>Geng, Dalong</creator><creator>Wang, Xudong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160421</creationdate><title>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</title><author>Zhang, Zhiqiang ; Geng, Dalong ; Wang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-5721792ff004cfa53ee4ca875fe4f4e4e2f7ecf8e21290be500c7f58ae5f60633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ACCURACY</topic><topic>Applied physics</topic><topic>BARIUM COMPOUNDS</topic><topic>Barium titanates</topic><topic>BENDING</topic><topic>CAPACITORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Deformation</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC POTENTIAL</topic><topic>Finite element analysis</topic><topic>FINITE ELEMENT METHOD</topic><topic>Mathematical analysis</topic><topic>NANOWIRES</topic><topic>Parallel plates</topic><topic>PIEZOELECTRICITY</topic><topic>TITANATES</topic><topic>Zinc oxide</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Geng, Dalong</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhiqiang</au><au>Geng, Dalong</au><au>Wang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>119</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectric effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4946843</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-04, Vol.119 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22594619
source AIP Journals Complete; Alma/SFX Local Collection
subjects ACCURACY
Applied physics
BARIUM COMPOUNDS
Barium titanates
BENDING
CAPACITORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Deformation
DISTRIBUTION
ELECTRIC POTENTIAL
Finite element analysis
FINITE ELEMENT METHOD
Mathematical analysis
NANOWIRES
Parallel plates
PIEZOELECTRICITY
TITANATES
Zinc oxide
ZINC OXIDES
title Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20piezoelectric%20and%20flexoelectric%20effects%20in%20nanowires%20using%20a%20decoupled%20finite%20element%20analysis%20method&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20Zhiqiang&rft.date=2016-04-21&rft.volume=119&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4946843&rft_dat=%3Cproquest_osti_%3E2121873920%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121873920&rft_id=info:pmid/&rfr_iscdi=true