Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications
An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1724 |
creator | Juneja, Sucheta Verma, Payal Savelyev, Dmitry A. Khonina, Svetlana N. Sudhakar, S. Kumar, Sushil |
description | An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells. |
doi_str_mv | 10.1063/1.4945136 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22591058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121814291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a10eef3c9991044b8d5d6856e0f98f344dae99a7089a054644c383447b7b8e883</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A12WR3k6PU1goFPWjxFrLZxKZsN2uSWvrvTW1BT54eDN8bZgaAa4xGGJXkDo8opwUm5QkY4KLAWVXi8hQMEOI0yyl5PwcXIawQynlVsQHYTozRKkJnYO-22kPXwQ_vtnG5lzrZOeV3Icq2tZ2GwbZWJcLYdh1go3sXbNQNrHdwMZvCl8l48QCjVsvOfm40NM7D4FrpodJtC2Xfp3cZrevCJTgzsg366niH4G06eR3Psvnz49P4fp4pkuOYSYy0NkRxzjGitGZN0ZSsKDUynBlCaSM157JCjEtU0JJSRViSq7qqmWaMDMHNwdeFaEVQdp8uVehSaZHnRbIt_lC9dyl4iGLlNr5LwUSOc8wwzTlO1O2B2tv81BC9t2vpdwIjsZ9fYHGc_z_4y_lfUPSNId-hhIVi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121814291</pqid></control><display><type>conference_proceeding</type><title>Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications</title><source>American Institute of Physics</source><creator>Juneja, Sucheta ; Verma, Payal ; Savelyev, Dmitry A. ; Khonina, Svetlana N. ; Sudhakar, S. ; Kumar, Sushil</creator><contributor>Akhtar, Jamil ; Sharma, Niti Nipun ; Gaol, Ford Lumban</contributor><creatorcontrib>Juneja, Sucheta ; Verma, Payal ; Savelyev, Dmitry A. ; Khonina, Svetlana N. ; Sudhakar, S. ; Kumar, Sushil ; Akhtar, Jamil ; Sharma, Niti Nipun ; Gaol, Ford Lumban</creatorcontrib><description>An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4945136</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ABSORPTION SPECTROSCOPY ; ATOMIC FORCE MICROSCOPY ; CHEMICAL VAPOR DEPOSITION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystallites ; CRYSTALS ; ENERGY GAP ; FOURIER TRANSFORMATION ; Fourier transforms ; HYDROGEN ; INFRARED SPECTRA ; LAYERS ; MHZ RANGE ; MICROSTRUCTURE ; Morphology ; NANOSTRUCTURES ; Optical properties ; Organic chemistry ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Quantum confinement ; RAMAN SPECTROSCOPY ; SILANES ; SILICON ; Silicon films ; SOLAR CELLS ; Spectrum analysis ; THIN FILMS ; Very high frequencies ; X-RAY DIFFRACTION</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1724 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a10eef3c9991044b8d5d6856e0f98f344dae99a7089a054644c383447b7b8e883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4945136$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,794,885,4512,23930,23931,25140,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591058$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Akhtar, Jamil</contributor><contributor>Sharma, Niti Nipun</contributor><contributor>Gaol, Ford Lumban</contributor><creatorcontrib>Juneja, Sucheta</creatorcontrib><creatorcontrib>Verma, Payal</creatorcontrib><creatorcontrib>Savelyev, Dmitry A.</creatorcontrib><creatorcontrib>Khonina, Svetlana N.</creatorcontrib><creatorcontrib>Sudhakar, S.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><title>Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications</title><title>AIP Conference Proceedings</title><description>An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.</description><subject>ABSORPTION SPECTROSCOPY</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystallites</subject><subject>CRYSTALS</subject><subject>ENERGY GAP</subject><subject>FOURIER TRANSFORMATION</subject><subject>Fourier transforms</subject><subject>HYDROGEN</subject><subject>INFRARED SPECTRA</subject><subject>LAYERS</subject><subject>MHZ RANGE</subject><subject>MICROSTRUCTURE</subject><subject>Morphology</subject><subject>NANOSTRUCTURES</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Quantum confinement</subject><subject>RAMAN SPECTROSCOPY</subject><subject>SILANES</subject><subject>SILICON</subject><subject>Silicon films</subject><subject>SOLAR CELLS</subject><subject>Spectrum analysis</subject><subject>THIN FILMS</subject><subject>Very high frequencies</subject><subject>X-RAY DIFFRACTION</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A12WR3k6PU1goFPWjxFrLZxKZsN2uSWvrvTW1BT54eDN8bZgaAa4xGGJXkDo8opwUm5QkY4KLAWVXi8hQMEOI0yyl5PwcXIawQynlVsQHYTozRKkJnYO-22kPXwQ_vtnG5lzrZOeV3Icq2tZ2GwbZWJcLYdh1go3sXbNQNrHdwMZvCl8l48QCjVsvOfm40NM7D4FrpodJtC2Xfp3cZrevCJTgzsg366niH4G06eR3Psvnz49P4fp4pkuOYSYy0NkRxzjGitGZN0ZSsKDUynBlCaSM157JCjEtU0JJSRViSq7qqmWaMDMHNwdeFaEVQdp8uVehSaZHnRbIt_lC9dyl4iGLlNr5LwUSOc8wwzTlO1O2B2tv81BC9t2vpdwIjsZ9fYHGc_z_4y_lfUPSNId-hhIVi</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Juneja, Sucheta</creator><creator>Verma, Payal</creator><creator>Savelyev, Dmitry A.</creator><creator>Khonina, Svetlana N.</creator><creator>Sudhakar, S.</creator><creator>Kumar, Sushil</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160413</creationdate><title>Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications</title><author>Juneja, Sucheta ; Verma, Payal ; Savelyev, Dmitry A. ; Khonina, Svetlana N. ; Sudhakar, S. ; Kumar, Sushil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a10eef3c9991044b8d5d6856e0f98f344dae99a7089a054644c383447b7b8e883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABSORPTION SPECTROSCOPY</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystallites</topic><topic>CRYSTALS</topic><topic>ENERGY GAP</topic><topic>FOURIER TRANSFORMATION</topic><topic>Fourier transforms</topic><topic>HYDROGEN</topic><topic>INFRARED SPECTRA</topic><topic>LAYERS</topic><topic>MHZ RANGE</topic><topic>MICROSTRUCTURE</topic><topic>Morphology</topic><topic>NANOSTRUCTURES</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Quantum confinement</topic><topic>RAMAN SPECTROSCOPY</topic><topic>SILANES</topic><topic>SILICON</topic><topic>Silicon films</topic><topic>SOLAR CELLS</topic><topic>Spectrum analysis</topic><topic>THIN FILMS</topic><topic>Very high frequencies</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juneja, Sucheta</creatorcontrib><creatorcontrib>Verma, Payal</creatorcontrib><creatorcontrib>Savelyev, Dmitry A.</creatorcontrib><creatorcontrib>Khonina, Svetlana N.</creatorcontrib><creatorcontrib>Sudhakar, S.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juneja, Sucheta</au><au>Verma, Payal</au><au>Savelyev, Dmitry A.</au><au>Khonina, Svetlana N.</au><au>Sudhakar, S.</au><au>Kumar, Sushil</au><au>Akhtar, Jamil</au><au>Sharma, Niti Nipun</au><au>Gaol, Ford Lumban</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-04-13</date><risdate>2016</risdate><volume>1724</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4945136</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2016, Vol.1724 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22591058 |
source | American Institute of Physics |
subjects | ABSORPTION SPECTROSCOPY ATOMIC FORCE MICROSCOPY CHEMICAL VAPOR DEPOSITION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Crystallites CRYSTALS ENERGY GAP FOURIER TRANSFORMATION Fourier transforms HYDROGEN INFRARED SPECTRA LAYERS MHZ RANGE MICROSTRUCTURE Morphology NANOSTRUCTURES Optical properties Organic chemistry Photovoltaic cells Plasma enhanced chemical vapor deposition Quantum confinement RAMAN SPECTROSCOPY SILANES SILICON Silicon films SOLAR CELLS Spectrum analysis THIN FILMS Very high frequencies X-RAY DIFFRACTION |
title | Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effect%20of%20power%20on%20growth%20of%20nanocrystalline%20silicon%20films%20deposited%20by%20VHF%20PECVD%20technique%20for%20solar%20cell%20applications&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Juneja,%20Sucheta&rft.date=2016-04-13&rft.volume=1724&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4945136&rft_dat=%3Cproquest_osti_%3E2121814291%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121814291&rft_id=info:pmid/&rfr_iscdi=true |