Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP
ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-08, Vol.109 (9) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 109 |
creator | Lamichhane, Tej N. Taufour, Valentin Kaluarachchi, Udhara S. Bud'ko, Sergey L. Canfield, Paul C. The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 Masters, Morgan W. Parker, David S. Thimmaiah, Srinivasa |
description | ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22590500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22590500</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_225905003</originalsourceid><addsrcrecordid>eNqNjrsKwjAYhYMoWC_v8INzIWmItbMXuggOTi4lxKSNtInkD0rf3gx9AKfznY8znBnJGC3LnDN2mJOMUsrzfSXYkqwQX6mKgvOMXE8Wlf_oMII3YHQIfpCt09HiAF8bO-hlaDVMUoF0Fn0M_j2CdfAIV3dL7gm1SbQhCyN71Nsp12R3Od-Pde4x2gaVjVp1yjunVWyKQlRUpF__rX6qcj9Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP</title><source>Scitation (AIP)</source><source>Alma/SFX Local Collection</source><creator>Lamichhane, Tej N. ; Taufour, Valentin ; Kaluarachchi, Udhara S. ; Bud'ko, Sergey L. ; Canfield, Paul C. ; The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 ; Masters, Morgan W. ; Parker, David S. ; Thimmaiah, Srinivasa</creator><creatorcontrib>Lamichhane, Tej N. ; Taufour, Valentin ; Kaluarachchi, Udhara S. ; Bud'ko, Sergey L. ; Canfield, Paul C. ; The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 ; Masters, Morgan W. ; Parker, David S. ; Thimmaiah, Srinivasa</creatorcontrib><description>ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><language>eng</language><publisher>United States</publisher><subject>ANISOTROPY ; ATOMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CURIE POINT ; ENTROPY ; FERROMAGNETISM ; MAGNETIC PROPERTIES ; MAGNETIZATION ; MONOCRYSTALS ; ORIENTATION ; ORTHORHOMBIC LATTICES ; RARE EARTHS ; TEMPERATURE DEPENDENCE ; TRANSITION ELEMENTS</subject><ispartof>Applied physics letters, 2016-08, Vol.109 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22590500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamichhane, Tej N.</creatorcontrib><creatorcontrib>Taufour, Valentin</creatorcontrib><creatorcontrib>Kaluarachchi, Udhara S.</creatorcontrib><creatorcontrib>Bud'ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011</creatorcontrib><creatorcontrib>Masters, Morgan W.</creatorcontrib><creatorcontrib>Parker, David S.</creatorcontrib><creatorcontrib>Thimmaiah, Srinivasa</creatorcontrib><title>Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP</title><title>Applied physics letters</title><description>ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.</description><subject>ANISOTROPY</subject><subject>ATOMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CURIE POINT</subject><subject>ENTROPY</subject><subject>FERROMAGNETISM</subject><subject>MAGNETIC PROPERTIES</subject><subject>MAGNETIZATION</subject><subject>MONOCRYSTALS</subject><subject>ORIENTATION</subject><subject>ORTHORHOMBIC LATTICES</subject><subject>RARE EARTHS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TRANSITION ELEMENTS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNjrsKwjAYhYMoWC_v8INzIWmItbMXuggOTi4lxKSNtInkD0rf3gx9AKfznY8znBnJGC3LnDN2mJOMUsrzfSXYkqwQX6mKgvOMXE8Wlf_oMII3YHQIfpCt09HiAF8bO-hlaDVMUoF0Fn0M_j2CdfAIV3dL7gm1SbQhCyN71Nsp12R3Od-Pde4x2gaVjVp1yjunVWyKQlRUpF__rX6qcj9Y</recordid><startdate>20160829</startdate><enddate>20160829</enddate><creator>Lamichhane, Tej N.</creator><creator>Taufour, Valentin</creator><creator>Kaluarachchi, Udhara S.</creator><creator>Bud'ko, Sergey L.</creator><creator>Canfield, Paul C.</creator><creator>The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011</creator><creator>Masters, Morgan W.</creator><creator>Parker, David S.</creator><creator>Thimmaiah, Srinivasa</creator><scope>OTOTI</scope></search><sort><creationdate>20160829</creationdate><title>Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP</title><author>Lamichhane, Tej N. ; Taufour, Valentin ; Kaluarachchi, Udhara S. ; Bud'ko, Sergey L. ; Canfield, Paul C. ; The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 ; Masters, Morgan W. ; Parker, David S. ; Thimmaiah, Srinivasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_225905003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANISOTROPY</topic><topic>ATOMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CURIE POINT</topic><topic>ENTROPY</topic><topic>FERROMAGNETISM</topic><topic>MAGNETIC PROPERTIES</topic><topic>MAGNETIZATION</topic><topic>MONOCRYSTALS</topic><topic>ORIENTATION</topic><topic>ORTHORHOMBIC LATTICES</topic><topic>RARE EARTHS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TRANSITION ELEMENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamichhane, Tej N.</creatorcontrib><creatorcontrib>Taufour, Valentin</creatorcontrib><creatorcontrib>Kaluarachchi, Udhara S.</creatorcontrib><creatorcontrib>Bud'ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011</creatorcontrib><creatorcontrib>Masters, Morgan W.</creatorcontrib><creatorcontrib>Parker, David S.</creatorcontrib><creatorcontrib>Thimmaiah, Srinivasa</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamichhane, Tej N.</au><au>Taufour, Valentin</au><au>Kaluarachchi, Udhara S.</au><au>Bud'ko, Sergey L.</au><au>Canfield, Paul C.</au><au>The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011</au><au>Masters, Morgan W.</au><au>Parker, David S.</au><au>Thimmaiah, Srinivasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP</atitle><jtitle>Applied physics letters</jtitle><date>2016-08-29</date><risdate>2016</risdate><volume>109</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.</abstract><cop>United States</cop></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-08, Vol.109 (9) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22590500 |
source | Scitation (AIP); Alma/SFX Local Collection |
subjects | ANISOTROPY ATOMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CURIE POINT ENTROPY FERROMAGNETISM MAGNETIC PROPERTIES MAGNETIZATION MONOCRYSTALS ORIENTATION ORTHORHOMBIC LATTICES RARE EARTHS TEMPERATURE DEPENDENCE TRANSITION ELEMENTS |
title | Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20ferromagnetism%20with%20large%20magnetic%20anisotropy%20in%20ZrMnP%20and%20HfMnP&rft.jtitle=Applied%20physics%20letters&rft.au=Lamichhane,%20Tej%20N.&rft.date=2016-08-29&rft.volume=109&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/&rft_dat=%3Costi%3E22590500%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |