Accurate derivative evaluation for any Grad–Shafranov solver

We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our schem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2016-01, Vol.305
Hauptverfasser: Ricketson, L.F., Cerfon, A.J., Rachh, M., Freidberg, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of computational physics
container_volume 305
creator Ricketson, L.F.
Cerfon, A.J.
Rachh, M.
Freidberg, J.P.
description We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.
doi_str_mv 10.1016/J.JCP.2015.11.015
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22570217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22570217</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_225702173</originalsourceid><addsrcrecordid>eNqNjj0KwjAYQIMoWH8O4BZwbvy-aK1dBCn-0EnQvYSYYqUkkKQBN-_gDT2JHTyA03vDGx4hMwSGgOtFwYr8zDhgwhBZhx6JEDKIeYrrPokAOMZZluGQjJx7AMAmWW0ist1J2VrhFb0pWwfh66CoCqJpOzWaVsZSoZ_0aMXt83pf7qKyQptAnWmCshMyqETj1PTHMZkf9tf8FBvn69LJ2it5l0ZrJX3JeZJ2G-nyv-oLiXZAhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</creator><creatorcontrib>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</creatorcontrib><description>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/J.JCP.2015.11.015</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVERGENCE ; CURRENT DENSITY ; DIRICHLET PROBLEM ; EQUILIBRIUM ; EVALUATION ; FINITE ELEMENT METHOD ; GRAD-SHAFRANOV EQUATION ; INTEGRAL EQUATIONS ; MAGNETIC CONFINEMENT ; MAGNETIC FIELDS ; SIMULATION</subject><ispartof>Journal of computational physics, 2016-01, Vol.305</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22570217$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Cerfon, A.J.</creatorcontrib><creatorcontrib>Rachh, M.</creatorcontrib><creatorcontrib>Freidberg, J.P.</creatorcontrib><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><title>Journal of computational physics</title><description>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</description><subject>ACCURACY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVERGENCE</subject><subject>CURRENT DENSITY</subject><subject>DIRICHLET PROBLEM</subject><subject>EQUILIBRIUM</subject><subject>EVALUATION</subject><subject>FINITE ELEMENT METHOD</subject><subject>GRAD-SHAFRANOV EQUATION</subject><subject>INTEGRAL EQUATIONS</subject><subject>MAGNETIC CONFINEMENT</subject><subject>MAGNETIC FIELDS</subject><subject>SIMULATION</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNjj0KwjAYQIMoWH8O4BZwbvy-aK1dBCn-0EnQvYSYYqUkkKQBN-_gDT2JHTyA03vDGx4hMwSGgOtFwYr8zDhgwhBZhx6JEDKIeYrrPokAOMZZluGQjJx7AMAmWW0ist1J2VrhFb0pWwfh66CoCqJpOzWaVsZSoZ_0aMXt83pf7qKyQptAnWmCshMyqETj1PTHMZkf9tf8FBvn69LJ2it5l0ZrJX3JeZJ2G-nyv-oLiXZAhQ</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Ricketson, L.F.</creator><creator>Cerfon, A.J.</creator><creator>Rachh, M.</creator><creator>Freidberg, J.P.</creator><scope>OTOTI</scope></search><sort><creationdate>20160115</creationdate><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><author>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_225702173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ACCURACY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVERGENCE</topic><topic>CURRENT DENSITY</topic><topic>DIRICHLET PROBLEM</topic><topic>EQUILIBRIUM</topic><topic>EVALUATION</topic><topic>FINITE ELEMENT METHOD</topic><topic>GRAD-SHAFRANOV EQUATION</topic><topic>INTEGRAL EQUATIONS</topic><topic>MAGNETIC CONFINEMENT</topic><topic>MAGNETIC FIELDS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Cerfon, A.J.</creatorcontrib><creatorcontrib>Rachh, M.</creatorcontrib><creatorcontrib>Freidberg, J.P.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricketson, L.F.</au><au>Cerfon, A.J.</au><au>Rachh, M.</au><au>Freidberg, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate derivative evaluation for any Grad–Shafranov solver</atitle><jtitle>Journal of computational physics</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>305</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</abstract><cop>United States</cop><doi>10.1016/J.JCP.2015.11.015</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2016-01, Vol.305
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22570217
source Elsevier ScienceDirect Journals Complete
subjects ACCURACY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVERGENCE
CURRENT DENSITY
DIRICHLET PROBLEM
EQUILIBRIUM
EVALUATION
FINITE ELEMENT METHOD
GRAD-SHAFRANOV EQUATION
INTEGRAL EQUATIONS
MAGNETIC CONFINEMENT
MAGNETIC FIELDS
SIMULATION
title Accurate derivative evaluation for any Grad–Shafranov solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20derivative%20evaluation%20for%20any%20Grad%E2%80%93Shafranov%20solver&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ricketson,%20L.F.&rft.date=2016-01-15&rft.volume=305&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/J.JCP.2015.11.015&rft_dat=%3Costi%3E22570217%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true