Accurate derivative evaluation for any Grad–Shafranov solver
We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our schem...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2016-01, Vol.305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of computational physics |
container_volume | 305 |
creator | Ricketson, L.F. Cerfon, A.J. Rachh, M. Freidberg, J.P. |
description | We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented. |
doi_str_mv | 10.1016/J.JCP.2015.11.015 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22570217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22570217</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_225702173</originalsourceid><addsrcrecordid>eNqNjj0KwjAYQIMoWH8O4BZwbvy-aK1dBCn-0EnQvYSYYqUkkKQBN-_gDT2JHTyA03vDGx4hMwSGgOtFwYr8zDhgwhBZhx6JEDKIeYrrPokAOMZZluGQjJx7AMAmWW0ist1J2VrhFb0pWwfh66CoCqJpOzWaVsZSoZ_0aMXt83pf7qKyQptAnWmCshMyqETj1PTHMZkf9tf8FBvn69LJ2it5l0ZrJX3JeZJ2G-nyv-oLiXZAhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</creator><creatorcontrib>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</creatorcontrib><description>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/J.JCP.2015.11.015</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVERGENCE ; CURRENT DENSITY ; DIRICHLET PROBLEM ; EQUILIBRIUM ; EVALUATION ; FINITE ELEMENT METHOD ; GRAD-SHAFRANOV EQUATION ; INTEGRAL EQUATIONS ; MAGNETIC CONFINEMENT ; MAGNETIC FIELDS ; SIMULATION</subject><ispartof>Journal of computational physics, 2016-01, Vol.305</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22570217$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Cerfon, A.J.</creatorcontrib><creatorcontrib>Rachh, M.</creatorcontrib><creatorcontrib>Freidberg, J.P.</creatorcontrib><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><title>Journal of computational physics</title><description>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</description><subject>ACCURACY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVERGENCE</subject><subject>CURRENT DENSITY</subject><subject>DIRICHLET PROBLEM</subject><subject>EQUILIBRIUM</subject><subject>EVALUATION</subject><subject>FINITE ELEMENT METHOD</subject><subject>GRAD-SHAFRANOV EQUATION</subject><subject>INTEGRAL EQUATIONS</subject><subject>MAGNETIC CONFINEMENT</subject><subject>MAGNETIC FIELDS</subject><subject>SIMULATION</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNjj0KwjAYQIMoWH8O4BZwbvy-aK1dBCn-0EnQvYSYYqUkkKQBN-_gDT2JHTyA03vDGx4hMwSGgOtFwYr8zDhgwhBZhx6JEDKIeYrrPokAOMZZluGQjJx7AMAmWW0ist1J2VrhFb0pWwfh66CoCqJpOzWaVsZSoZ_0aMXt83pf7qKyQptAnWmCshMyqETj1PTHMZkf9tf8FBvn69LJ2it5l0ZrJX3JeZJ2G-nyv-oLiXZAhQ</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Ricketson, L.F.</creator><creator>Cerfon, A.J.</creator><creator>Rachh, M.</creator><creator>Freidberg, J.P.</creator><scope>OTOTI</scope></search><sort><creationdate>20160115</creationdate><title>Accurate derivative evaluation for any Grad–Shafranov solver</title><author>Ricketson, L.F. ; Cerfon, A.J. ; Rachh, M. ; Freidberg, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_225702173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ACCURACY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVERGENCE</topic><topic>CURRENT DENSITY</topic><topic>DIRICHLET PROBLEM</topic><topic>EQUILIBRIUM</topic><topic>EVALUATION</topic><topic>FINITE ELEMENT METHOD</topic><topic>GRAD-SHAFRANOV EQUATION</topic><topic>INTEGRAL EQUATIONS</topic><topic>MAGNETIC CONFINEMENT</topic><topic>MAGNETIC FIELDS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricketson, L.F.</creatorcontrib><creatorcontrib>Cerfon, A.J.</creatorcontrib><creatorcontrib>Rachh, M.</creatorcontrib><creatorcontrib>Freidberg, J.P.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricketson, L.F.</au><au>Cerfon, A.J.</au><au>Rachh, M.</au><au>Freidberg, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate derivative evaluation for any Grad–Shafranov solver</atitle><jtitle>Journal of computational physics</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>305</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.</abstract><cop>United States</cop><doi>10.1016/J.JCP.2015.11.015</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2016-01, Vol.305 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_22570217 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ACCURACY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVERGENCE CURRENT DENSITY DIRICHLET PROBLEM EQUILIBRIUM EVALUATION FINITE ELEMENT METHOD GRAD-SHAFRANOV EQUATION INTEGRAL EQUATIONS MAGNETIC CONFINEMENT MAGNETIC FIELDS SIMULATION |
title | Accurate derivative evaluation for any Grad–Shafranov solver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20derivative%20evaluation%20for%20any%20Grad%E2%80%93Shafranov%20solver&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ricketson,%20L.F.&rft.date=2016-01-15&rft.volume=305&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/J.JCP.2015.11.015&rft_dat=%3Costi%3E22570217%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |