NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA

ABSTRACT We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-06, Vol.806 (1), p.1-10
Hauptverfasser: Kaneko, T., Yokoyama, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 806
creator Kaneko, T.
Yokoyama, T.
description ABSTRACT We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearing motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10-100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.
doi_str_mv 10.1088/0004-637X/806/1/115
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22522305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786172138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-effa25c9c46ca8ceee1f08b52ad8df0d5c43a36e30637b059bd63ad6965f39e53</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EEuXxC1gssbCE-BE79hjaFCK1CUpTBAOyUscRQaUpcTrw73EUxIiYrKvznWvdcwC4wugWIyF8hFDgcRo--wJxH_sYsyMwwYwKL6AsPAaTX-IUnFn7PoxEygl4TdfLOE-m0QKuivXsBWYpTFK4Soo1fMyzZZLG6TSG8yxfRkXixLsXmEezxA1PMZxm6SxOV6PibMVDDFfZIsqdkmdpdAFO6nJrzeXPew7W87iYPniL7H7409MBEb1n6rokTEsdcF0KbYzBNRIbRspKVDWqmA5oSbmhyF2wQUxuKk7LikvOaioNo-fgetzb2r5RVje90W-63e2M7hUhjBCKBupmpPZd-3kwtlcfjdVmuy13pj1YhUPBcUgwFf9AOZOBDELpUDqiumut7Uyt9l3zUXZfCiM1tKOGsNWQvXLtKKxcO87lj66m3av39tDtXD5_Or4BV3mHwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765949479</pqid></control><display><type>article</type><title>NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA</title><source>IOP Publishing Free Content</source><creator>Kaneko, T. ; Yokoyama, T.</creator><creatorcontrib>Kaneko, T. ; Yokoyama, T.</creatorcontrib><description>ABSTRACT We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearing motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10-100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/806/1/115</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>Arcades ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computer simulation ; COMPUTERIZED SIMULATION ; Condensing ; DENSITY ; EXTREME ULTRAVIOLET RADIATION ; FILAMENTS ; Formations ; MAGNETIC FIELDS ; Magnetic flux ; MAGNETOHYDRODYNAMICS ; Mathematical models ; NUMERICAL ANALYSIS ; PLASMA ; Prominences ; RADIATIVE COOLING ; RESPONSE FUNCTIONS ; SHEAR ; SOLAR CORONA ; SOLAR PROMINENCES ; SUN ; Sun: corona ; Sun: filaments, prominences ; THERMAL CONDUCTION ; TRAPPING</subject><ispartof>The Astrophysical journal, 2015-06, Vol.806 (1), p.1-10</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-effa25c9c46ca8ceee1f08b52ad8df0d5c43a36e30637b059bd63ad6965f39e53</citedby><cites>FETCH-LOGICAL-c428t-effa25c9c46ca8ceee1f08b52ad8df0d5c43a36e30637b059bd63ad6965f39e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/806/1/115/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38869,53846</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/806/1/115$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22522305$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Yokoyama, T.</creatorcontrib><title>NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearing motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10-100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.</description><subject>Arcades</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Condensing</subject><subject>DENSITY</subject><subject>EXTREME ULTRAVIOLET RADIATION</subject><subject>FILAMENTS</subject><subject>Formations</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic flux</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical models</subject><subject>NUMERICAL ANALYSIS</subject><subject>PLASMA</subject><subject>Prominences</subject><subject>RADIATIVE COOLING</subject><subject>RESPONSE FUNCTIONS</subject><subject>SHEAR</subject><subject>SOLAR CORONA</subject><subject>SOLAR PROMINENCES</subject><subject>SUN</subject><subject>Sun: corona</subject><subject>Sun: filaments, prominences</subject><subject>THERMAL CONDUCTION</subject><subject>TRAPPING</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0EEuXxC1gssbCE-BE79hjaFCK1CUpTBAOyUscRQaUpcTrw73EUxIiYrKvznWvdcwC4wugWIyF8hFDgcRo--wJxH_sYsyMwwYwKL6AsPAaTX-IUnFn7PoxEygl4TdfLOE-m0QKuivXsBWYpTFK4Soo1fMyzZZLG6TSG8yxfRkXixLsXmEezxA1PMZxm6SxOV6PibMVDDFfZIsqdkmdpdAFO6nJrzeXPew7W87iYPniL7H7409MBEb1n6rokTEsdcF0KbYzBNRIbRspKVDWqmA5oSbmhyF2wQUxuKk7LikvOaioNo-fgetzb2r5RVje90W-63e2M7hUhjBCKBupmpPZd-3kwtlcfjdVmuy13pj1YhUPBcUgwFf9AOZOBDELpUDqiumut7Uyt9l3zUXZfCiM1tKOGsNWQvXLtKKxcO87lj66m3av39tDtXD5_Or4BV3mHwg</recordid><startdate>20150610</startdate><enddate>20150610</enddate><creator>Kaneko, T.</creator><creator>Yokoyama, T.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150610</creationdate><title>NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA</title><author>Kaneko, T. ; Yokoyama, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-effa25c9c46ca8ceee1f08b52ad8df0d5c43a36e30637b059bd63ad6965f39e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arcades</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Condensing</topic><topic>DENSITY</topic><topic>EXTREME ULTRAVIOLET RADIATION</topic><topic>FILAMENTS</topic><topic>Formations</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic flux</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical models</topic><topic>NUMERICAL ANALYSIS</topic><topic>PLASMA</topic><topic>Prominences</topic><topic>RADIATIVE COOLING</topic><topic>RESPONSE FUNCTIONS</topic><topic>SHEAR</topic><topic>SOLAR CORONA</topic><topic>SOLAR PROMINENCES</topic><topic>SUN</topic><topic>Sun: corona</topic><topic>Sun: filaments, prominences</topic><topic>THERMAL CONDUCTION</topic><topic>TRAPPING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Yokoyama, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaneko, T.</au><au>Yokoyama, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-06-10</date><risdate>2015</risdate><volume>806</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearing motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10-100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/806/1/115</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2015-06, Vol.806 (1), p.1-10
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_osti_scitechconnect_22522305
source IOP Publishing Free Content
subjects Arcades
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Computer simulation
COMPUTERIZED SIMULATION
Condensing
DENSITY
EXTREME ULTRAVIOLET RADIATION
FILAMENTS
Formations
MAGNETIC FIELDS
Magnetic flux
MAGNETOHYDRODYNAMICS
Mathematical models
NUMERICAL ANALYSIS
PLASMA
Prominences
RADIATIVE COOLING
RESPONSE FUNCTIONS
SHEAR
SOLAR CORONA
SOLAR PROMINENCES
SUN
Sun: corona
Sun: filaments, prominences
THERMAL CONDUCTION
TRAPPING
title NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20STUDY%20ON%20IN%20SITU%20PROMINENCE%20FORMATION%20BY%20RADIATIVE%20CONDENSATION%20IN%20THE%20SOLAR%20CORONA&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kaneko,%20T.&rft.date=2015-06-10&rft.volume=806&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/806/1/115&rft_dat=%3Cproquest_O3W%3E1786172138%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765949479&rft_id=info:pmid/&rfr_iscdi=true