CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS
ABSTRACT We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2015-07, Vol.807 (2), p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 807 |
creator | Fang, X. Xia, C. Keppens, R. Doorsselaere, T. Van |
description | ABSTRACT We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s−1 in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes. |
doi_str_mv | 10.1088/0004-637X/807/2/142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22522185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762088668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d5befac7f4f673c73c3a1bcc29dbb15d6dd8338dd312d6b4c173729d0bb374913</originalsourceid><addsrcrecordid>eNqNkcFPgzAUxhujiXP6F3hp4sWDCG2BFm_I2EZkkMAW9dRAC5FljknZwf_eIsajMXnJy8v3-97h-wC4RtY9shgzLcuyDZfQF5NZ1MQmsvEJmCCHMMMmDj0Fk1_iHFwotR1O7HkTkAZpliZ-DDM_SqCelb9IwnUUQD8L_FmYP8AsfEw3yQzmyzR4yu9gHK2iNQxegzjUl_-thH4G53H6nF-Cs7rYqerqZ0_BZh6ug6URp4so8GNDEEZ6QzplVReC1nbtUiL0kAKVQmBPliVypCslI4RJSRCWbmkLRAnVolWWhNoeIlNwM_5tVd9wJZq-Em-i3e8r0XOMHYwRczR1O1KHrv04Vqrn740S1W5X7Kv2qDiiLtb5uS77B4qpSz3PJholIyq6Vqmuqvmha96L7pMjiw998CFePqTNdR8cc92Hdpmjq2kPfNseu73O50_HFyG8gwU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727679943</pqid></control><display><type>article</type><title>CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS</title><source>IOP Publishing Free Content</source><creator>Fang, X. ; Xia, C. ; Keppens, R. ; Doorsselaere, T. Van</creator><creatorcontrib>Fang, X. ; Xia, C. ; Keppens, R. ; Doorsselaere, T. Van</creatorcontrib><description>ABSTRACT We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s−1 in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/807/2/142</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>Arcades ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CALCULATION METHODS ; Computer simulation ; COMPUTERIZED SIMULATION ; Condensing ; CORRELATIONS ; DENSITY ; Dynamics ; FILAMENTS ; KINETIC ENERGY ; LIMIT CYCLE ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics(MHD) ; Rain ; RESOLUTION ; SHEAR ; Shear flow ; Siphons ; SOLAR CORONA ; SOLAR PROMINENCES ; SUN ; Sun: corona ; Sun: filaments, prominences ; THERMODYNAMICS ; VELOCITY</subject><ispartof>The Astrophysical journal, 2015-07, Vol.807 (2), p.1-15</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d5befac7f4f673c73c3a1bcc29dbb15d6dd8338dd312d6b4c173729d0bb374913</citedby><cites>FETCH-LOGICAL-c383t-d5befac7f4f673c73c3a1bcc29dbb15d6dd8338dd312d6b4c173729d0bb374913</cites><orcidid>0000-0002-7153-4304 ; 0000-0003-1528-6921 ; 0000-0001-9628-4113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/807/2/142/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/807/2/142$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22522185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Xia, C.</creatorcontrib><creatorcontrib>Keppens, R.</creatorcontrib><creatorcontrib>Doorsselaere, T. Van</creatorcontrib><title>CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s−1 in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.</description><subject>Arcades</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CALCULATION METHODS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Condensing</subject><subject>CORRELATIONS</subject><subject>DENSITY</subject><subject>Dynamics</subject><subject>FILAMENTS</subject><subject>KINETIC ENERGY</subject><subject>LIMIT CYCLE</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics(MHD)</subject><subject>Rain</subject><subject>RESOLUTION</subject><subject>SHEAR</subject><subject>Shear flow</subject><subject>Siphons</subject><subject>SOLAR CORONA</subject><subject>SOLAR PROMINENCES</subject><subject>SUN</subject><subject>Sun: corona</subject><subject>Sun: filaments, prominences</subject><subject>THERMODYNAMICS</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcFPgzAUxhujiXP6F3hp4sWDCG2BFm_I2EZkkMAW9dRAC5FljknZwf_eIsajMXnJy8v3-97h-wC4RtY9shgzLcuyDZfQF5NZ1MQmsvEJmCCHMMMmDj0Fk1_iHFwotR1O7HkTkAZpliZ-DDM_SqCelb9IwnUUQD8L_FmYP8AsfEw3yQzmyzR4yu9gHK2iNQxegzjUl_-thH4G53H6nF-Cs7rYqerqZ0_BZh6ug6URp4so8GNDEEZ6QzplVReC1nbtUiL0kAKVQmBPliVypCslI4RJSRCWbmkLRAnVolWWhNoeIlNwM_5tVd9wJZq-Em-i3e8r0XOMHYwRczR1O1KHrv04Vqrn740S1W5X7Kv2qDiiLtb5uS77B4qpSz3PJholIyq6Vqmuqvmha96L7pMjiw998CFePqTNdR8cc92Hdpmjq2kPfNseu73O50_HFyG8gwU</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Fang, X.</creator><creator>Xia, C.</creator><creator>Keppens, R.</creator><creator>Doorsselaere, T. Van</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7153-4304</orcidid><orcidid>https://orcid.org/0000-0003-1528-6921</orcidid><orcidid>https://orcid.org/0000-0001-9628-4113</orcidid></search><sort><creationdate>20150710</creationdate><title>CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS</title><author>Fang, X. ; Xia, C. ; Keppens, R. ; Doorsselaere, T. Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d5befac7f4f673c73c3a1bcc29dbb15d6dd8338dd312d6b4c173729d0bb374913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arcades</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CALCULATION METHODS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Condensing</topic><topic>CORRELATIONS</topic><topic>DENSITY</topic><topic>Dynamics</topic><topic>FILAMENTS</topic><topic>KINETIC ENERGY</topic><topic>LIMIT CYCLE</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics(MHD)</topic><topic>Rain</topic><topic>RESOLUTION</topic><topic>SHEAR</topic><topic>Shear flow</topic><topic>Siphons</topic><topic>SOLAR CORONA</topic><topic>SOLAR PROMINENCES</topic><topic>SUN</topic><topic>Sun: corona</topic><topic>Sun: filaments, prominences</topic><topic>THERMODYNAMICS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Xia, C.</creatorcontrib><creatorcontrib>Keppens, R.</creatorcontrib><creatorcontrib>Doorsselaere, T. Van</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, X.</au><au>Xia, C.</au><au>Keppens, R.</au><au>Doorsselaere, T. Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>807</volume><issue>2</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s−1 in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/807/2/142</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7153-4304</orcidid><orcidid>https://orcid.org/0000-0003-1528-6921</orcidid><orcidid>https://orcid.org/0000-0001-9628-4113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2015-07, Vol.807 (2), p.1-15 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22522185 |
source | IOP Publishing Free Content |
subjects | Arcades ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CALCULATION METHODS Computer simulation COMPUTERIZED SIMULATION Condensing CORRELATIONS DENSITY Dynamics FILAMENTS KINETIC ENERGY LIMIT CYCLE MAGNETOHYDRODYNAMICS magnetohydrodynamics(MHD) Rain RESOLUTION SHEAR Shear flow Siphons SOLAR CORONA SOLAR PROMINENCES SUN Sun: corona Sun: filaments, prominences THERMODYNAMICS VELOCITY |
title | CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CORONAL%20RAIN%20IN%20MAGNETIC%20ARCADES:%20REBOUND%20SHOCKS,%20LIMIT%20CYCLES,%20AND%20SHEAR%20FLOWS&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fang,%20X.&rft.date=2015-07-10&rft.volume=807&rft.issue=2&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/807/2/142&rft_dat=%3Cproquest_O3W%3E1762088668%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727679943&rft_id=info:pmid/&rfr_iscdi=true |