SICK: THE SPECTROSCOPIC INFERENCE CRANK

ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2016-03, Vol.223 (1), p.8-8
1. Verfasser: Casey, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 8
container_title The Astrophysical journal. Supplement series
container_volume 223
creator Casey, Andrew R.
description ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.
doi_str_mv 10.3847/0067-0049/223/1/8
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22519975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893906095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</originalsourceid><addsrcrecordid>eNqNkM9PwjAYhhujiYj-Ad6WeNDLXLt2_eGNNEMWCBDAc9OVLo7Aius48N9bMuPRePoO7_O--fIA8IjgK-aEJRBSFkNIRJKmOEEJvwIDlGEeE0yzazD4zW_Bnfc7CCHLsBiA53Uhp2_RZpJH62UuN6vFWi6WhYyK-Thf5XOZR3I1mk_vwU2l994-_Nwh-BjnGzmJZ4v3Qo5msSGcdrEtMcJbhjPLthzyigqOUkEM41aYrS45MtyUVcYYKY1BkEJqNQ0hoZpZneIheOp3ne9q5U3dWfNpXNNY06k0zZAQ4fEheOmpY-u-TtZ36lB7Y_d73Vh38gpxgUUYF_9BOReMCoECinrUtM771lbq2NYH3Z4VgupiWV0sqovF8ApWSPHQiftO7Y5q505tE-z8wX8Dtjl2jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888976991</pqid></control><display><type>article</type><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><source>IOP Publishing Free Content</source><creator>Casey, Andrew R.</creator><creatorcontrib>Casey, Andrew R.</creatorcontrib><description>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/0067-0049/223/1/8</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMIC RADIATION ; DATA ANALYSIS ; DIFFUSION ; Eccentrics ; Estimates ; Format ; Inference ; INTERPOLATION ; MARKOV PROCESS ; Mathematical models ; methods: data analysis ; methods: statistical ; MONTE CARLO METHOD ; Parameters ; RED SHIFT ; RESOLUTION ; SCALARS ; SIGNAL-TO-NOISE RATIO ; Spectra ; Spectroscopy ; stars: fundamental parameters ; SUN ; Sun: fundamental parameters ; techniques: spectroscopic ; WAVELENGTHS</subject><ispartof>The Astrophysical journal. Supplement series, 2016-03, Vol.223 (1), p.8-8</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</citedby><cites>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</cites><orcidid>0000-0003-0174-0564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0067-0049/223/1/8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0067-0049/223/1/8$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22519975$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Casey, Andrew R.</creatorcontrib><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</description><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMIC RADIATION</subject><subject>DATA ANALYSIS</subject><subject>DIFFUSION</subject><subject>Eccentrics</subject><subject>Estimates</subject><subject>Format</subject><subject>Inference</subject><subject>INTERPOLATION</subject><subject>MARKOV PROCESS</subject><subject>Mathematical models</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>MONTE CARLO METHOD</subject><subject>Parameters</subject><subject>RED SHIFT</subject><subject>RESOLUTION</subject><subject>SCALARS</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>stars: fundamental parameters</subject><subject>SUN</subject><subject>Sun: fundamental parameters</subject><subject>techniques: spectroscopic</subject><subject>WAVELENGTHS</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkM9PwjAYhhujiYj-Ad6WeNDLXLt2_eGNNEMWCBDAc9OVLo7Aius48N9bMuPRePoO7_O--fIA8IjgK-aEJRBSFkNIRJKmOEEJvwIDlGEeE0yzazD4zW_Bnfc7CCHLsBiA53Uhp2_RZpJH62UuN6vFWi6WhYyK-Thf5XOZR3I1mk_vwU2l994-_Nwh-BjnGzmJZ4v3Qo5msSGcdrEtMcJbhjPLthzyigqOUkEM41aYrS45MtyUVcYYKY1BkEJqNQ0hoZpZneIheOp3ne9q5U3dWfNpXNNY06k0zZAQ4fEheOmpY-u-TtZ36lB7Y_d73Vh38gpxgUUYF_9BOReMCoECinrUtM771lbq2NYH3Z4VgupiWV0sqovF8ApWSPHQiftO7Y5q505tE-z8wX8Dtjl2jA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Casey, Andrew R.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0174-0564</orcidid></search><sort><creationdate>20160301</creationdate><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><author>Casey, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMIC RADIATION</topic><topic>DATA ANALYSIS</topic><topic>DIFFUSION</topic><topic>Eccentrics</topic><topic>Estimates</topic><topic>Format</topic><topic>Inference</topic><topic>INTERPOLATION</topic><topic>MARKOV PROCESS</topic><topic>Mathematical models</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>MONTE CARLO METHOD</topic><topic>Parameters</topic><topic>RED SHIFT</topic><topic>RESOLUTION</topic><topic>SCALARS</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>stars: fundamental parameters</topic><topic>SUN</topic><topic>Sun: fundamental parameters</topic><topic>techniques: spectroscopic</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casey, Andrew R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Casey, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SICK: THE SPECTROSCOPIC INFERENCE CRANK</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>223</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/0067-0049/223/1/8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0174-0564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2016-03, Vol.223 (1), p.8-8
issn 0067-0049
1538-4365
language eng
recordid cdi_osti_scitechconnect_22519975
source IOP Publishing Free Content
subjects ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COSMIC RADIATION
DATA ANALYSIS
DIFFUSION
Eccentrics
Estimates
Format
Inference
INTERPOLATION
MARKOV PROCESS
Mathematical models
methods: data analysis
methods: statistical
MONTE CARLO METHOD
Parameters
RED SHIFT
RESOLUTION
SCALARS
SIGNAL-TO-NOISE RATIO
Spectra
Spectroscopy
stars: fundamental parameters
SUN
Sun: fundamental parameters
techniques: spectroscopic
WAVELENGTHS
title SICK: THE SPECTROSCOPIC INFERENCE CRANK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SICK:%20THE%20SPECTROSCOPIC%20INFERENCE%20CRANK&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Casey,%20Andrew%20R.&rft.date=2016-03-01&rft.volume=223&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/0067-0049/223/1/8&rft_dat=%3Cproquest_O3W%3E1893906095%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888976991&rft_id=info:pmid/&rfr_iscdi=true