SICK: THE SPECTROSCOPIC INFERENCE CRANK
ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys su...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2016-03, Vol.223 (1), p.8-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 223 |
creator | Casey, Andrew R. |
description | ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license. |
doi_str_mv | 10.3847/0067-0049/223/1/8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22519975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893906095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</originalsourceid><addsrcrecordid>eNqNkM9PwjAYhhujiYj-Ad6WeNDLXLt2_eGNNEMWCBDAc9OVLo7Aius48N9bMuPRePoO7_O--fIA8IjgK-aEJRBSFkNIRJKmOEEJvwIDlGEeE0yzazD4zW_Bnfc7CCHLsBiA53Uhp2_RZpJH62UuN6vFWi6WhYyK-Thf5XOZR3I1mk_vwU2l994-_Nwh-BjnGzmJZ4v3Qo5msSGcdrEtMcJbhjPLthzyigqOUkEM41aYrS45MtyUVcYYKY1BkEJqNQ0hoZpZneIheOp3ne9q5U3dWfNpXNNY06k0zZAQ4fEheOmpY-u-TtZ36lB7Y_d73Vh38gpxgUUYF_9BOReMCoECinrUtM771lbq2NYH3Z4VgupiWV0sqovF8ApWSPHQiftO7Y5q505tE-z8wX8Dtjl2jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888976991</pqid></control><display><type>article</type><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><source>IOP Publishing Free Content</source><creator>Casey, Andrew R.</creator><creatorcontrib>Casey, Andrew R.</creatorcontrib><description>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/0067-0049/223/1/8</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMIC RADIATION ; DATA ANALYSIS ; DIFFUSION ; Eccentrics ; Estimates ; Format ; Inference ; INTERPOLATION ; MARKOV PROCESS ; Mathematical models ; methods: data analysis ; methods: statistical ; MONTE CARLO METHOD ; Parameters ; RED SHIFT ; RESOLUTION ; SCALARS ; SIGNAL-TO-NOISE RATIO ; Spectra ; Spectroscopy ; stars: fundamental parameters ; SUN ; Sun: fundamental parameters ; techniques: spectroscopic ; WAVELENGTHS</subject><ispartof>The Astrophysical journal. Supplement series, 2016-03, Vol.223 (1), p.8-8</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</citedby><cites>FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</cites><orcidid>0000-0003-0174-0564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0067-0049/223/1/8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0067-0049/223/1/8$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22519975$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Casey, Andrew R.</creatorcontrib><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</description><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMIC RADIATION</subject><subject>DATA ANALYSIS</subject><subject>DIFFUSION</subject><subject>Eccentrics</subject><subject>Estimates</subject><subject>Format</subject><subject>Inference</subject><subject>INTERPOLATION</subject><subject>MARKOV PROCESS</subject><subject>Mathematical models</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>MONTE CARLO METHOD</subject><subject>Parameters</subject><subject>RED SHIFT</subject><subject>RESOLUTION</subject><subject>SCALARS</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>stars: fundamental parameters</subject><subject>SUN</subject><subject>Sun: fundamental parameters</subject><subject>techniques: spectroscopic</subject><subject>WAVELENGTHS</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkM9PwjAYhhujiYj-Ad6WeNDLXLt2_eGNNEMWCBDAc9OVLo7Aius48N9bMuPRePoO7_O--fIA8IjgK-aEJRBSFkNIRJKmOEEJvwIDlGEeE0yzazD4zW_Bnfc7CCHLsBiA53Uhp2_RZpJH62UuN6vFWi6WhYyK-Thf5XOZR3I1mk_vwU2l994-_Nwh-BjnGzmJZ4v3Qo5msSGcdrEtMcJbhjPLthzyigqOUkEM41aYrS45MtyUVcYYKY1BkEJqNQ0hoZpZneIheOp3ne9q5U3dWfNpXNNY06k0zZAQ4fEheOmpY-u-TtZ36lB7Y_d73Vh38gpxgUUYF_9BOReMCoECinrUtM771lbq2NYH3Z4VgupiWV0sqovF8ApWSPHQiftO7Y5q505tE-z8wX8Dtjl2jA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Casey, Andrew R.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0174-0564</orcidid></search><sort><creationdate>20160301</creationdate><title>SICK: THE SPECTROSCOPIC INFERENCE CRANK</title><author>Casey, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-eb313d735e7d808f6981294c78e9cdab81c8cbf5774bcc10606ea68e946a7ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMIC RADIATION</topic><topic>DATA ANALYSIS</topic><topic>DIFFUSION</topic><topic>Eccentrics</topic><topic>Estimates</topic><topic>Format</topic><topic>Inference</topic><topic>INTERPOLATION</topic><topic>MARKOV PROCESS</topic><topic>Mathematical models</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>MONTE CARLO METHOD</topic><topic>Parameters</topic><topic>RED SHIFT</topic><topic>RESOLUTION</topic><topic>SCALARS</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>stars: fundamental parameters</topic><topic>SUN</topic><topic>Sun: fundamental parameters</topic><topic>techniques: spectroscopic</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casey, Andrew R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Casey, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SICK: THE SPECTROSCOPIC INFERENCE CRANK</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>223</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>ABSTRACT There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/0067-0049/223/1/8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0174-0564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2016-03, Vol.223 (1), p.8-8 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_osti_scitechconnect_22519975 |
source | IOP Publishing Free Content |
subjects | ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COSMIC RADIATION DATA ANALYSIS DIFFUSION Eccentrics Estimates Format Inference INTERPOLATION MARKOV PROCESS Mathematical models methods: data analysis methods: statistical MONTE CARLO METHOD Parameters RED SHIFT RESOLUTION SCALARS SIGNAL-TO-NOISE RATIO Spectra Spectroscopy stars: fundamental parameters SUN Sun: fundamental parameters techniques: spectroscopic WAVELENGTHS |
title | SICK: THE SPECTROSCOPIC INFERENCE CRANK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SICK:%20THE%20SPECTROSCOPIC%20INFERENCE%20CRANK&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Casey,%20Andrew%20R.&rft.date=2016-03-01&rft.volume=223&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/0067-0049/223/1/8&rft_dat=%3Cproquest_O3W%3E1893906095%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888976991&rft_id=info:pmid/&rfr_iscdi=true |