The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide

Li‐rich cation‐disordered rock‐salt (DRX) materials have emerged as promising candidates for high‐capacity oxide cathodes. Their fluorinated variants have shown improved cycling stability with effectively suppressed oxygen loss. However, a comprehensive understanding of how fluorination impacts the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-12, Vol.13 (47), p.n/a
Hauptverfasser: Jiao, Sichen, Sun, Yujian, Wang, Junyang, Shi, Dekai, Li, Yapei, Jiang, Xiangkang, Wang, Fangwei, Zhang, Yuanpeng, Liu, Jue, Wang, Xuelong, Yu, Xiqian, Li, Hong, Chen, Liquan, Huang, Xuejie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page
container_title Advanced energy materials
container_volume 13
creator Jiao, Sichen
Sun, Yujian
Wang, Junyang
Shi, Dekai
Li, Yapei
Jiang, Xiangkang
Wang, Fangwei
Zhang, Yuanpeng
Liu, Jue
Wang, Xuelong
Yu, Xiqian
Li, Hong
Chen, Liquan
Huang, Xuejie
description Li‐rich cation‐disordered rock‐salt (DRX) materials have emerged as promising candidates for high‐capacity oxide cathodes. Their fluorinated variants have shown improved cycling stability with effectively suppressed oxygen loss. However, a comprehensive understanding of how fluorination impacts the multiscale structure and lithium transportation in DRX remains elusive in experiments. Herein, the neutron total scattering technique in conjunction with the advanced reverse Monte Carlo (RMC) fitting method is employed to characterize the intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 (LTNNO) and the fluorinated Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 (LTNNOF). Through rigorous statistical analysis, the multiscale structural evolution upon fluorination is quantified from atomic (≤5 Å) to long‐range scale (≈100 Å). The local Li‐rich environments around F induce a modest 2.4% increment in the number of fast Li 0TM (transition metal) channels. Crucially, at a broader scale, the proportion of 0TM channels participating in percolation increases significantly from 2.9% in LTNNO to 8.7% in LTNNOF. Fluorination improves the capacity release mainly through merging isolated fast Li channels into the percolation network. This work experimentally unravels the multiscale mechanism of fluorination‐induced performance improvement in DRX materials and highlights the necessity of adopting an advanced RMC fitting method to obtain a full view of the complex structural features in developing high‐capacity DRX cathodes. The intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 and its fluorinated counterpart Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 is nicely depicted within a supercell containing 64 000 atoms through neutron total scattering in conjunction with reverse Monte Carlo modeling. Following a quantitative investigation, the enhanced capacity upon fluorination is shown to originate from the expanded lithium percolation network achieved by bridging isolated diffusion channels.
doi_str_mv 10.1002/aenm.202301636
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2251579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901735643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3446-866f0cb73cb2e8086175ca021f95a6093a433a578db34342d6338fb4a952f85d3</originalsourceid><addsrcrecordid>eNqFkMtOAjEUhhujiQTZum50DfY2nZklIqgJyEJcN51OhylhWmwHlZ2P4DP6JJZgcOnZnJOT7z-XH4BLjAYYIXIjtW0GBBGKMKf8BHQwx6zPM4ZOjzUl56AXwgrFYDlGlHaAW9QazrSqpTWhga6Ck_XWeWM1vHMbY5ewch62ERrbyChdwqlpa7Nt4HPrvFxqeKtr-WYiZSwcydY4-_35dWeC86X2kY-92pUazj9MqS_AWSXXQfd-cxe8TMaL0UN_Or9_HA2nfUUZ4_2M8wqpIqWqIDpDGcdpoiQiuMoTyVFOJaNUJmlWFpRRRkpOaVYVTOYJqbKkpF1wdZjrQmtEUKaNPypnrVatICTBSZpH6PoAbbx73erQipXbehvvEiRHOKUJj2u6YHCglHcheF2JjTeN9DuBkdibL_bmi6P5UZAfBO9mrXf_0GI4fpr9aX8A9NSHzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901735643</pqid></control><display><type>article</type><title>The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide</title><source>Wiley</source><creator>Jiao, Sichen ; Sun, Yujian ; Wang, Junyang ; Shi, Dekai ; Li, Yapei ; Jiang, Xiangkang ; Wang, Fangwei ; Zhang, Yuanpeng ; Liu, Jue ; Wang, Xuelong ; Yu, Xiqian ; Li, Hong ; Chen, Liquan ; Huang, Xuejie</creator><creatorcontrib>Jiao, Sichen ; Sun, Yujian ; Wang, Junyang ; Shi, Dekai ; Li, Yapei ; Jiang, Xiangkang ; Wang, Fangwei ; Zhang, Yuanpeng ; Liu, Jue ; Wang, Xuelong ; Yu, Xiqian ; Li, Hong ; Chen, Liquan ; Huang, Xuejie ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Li‐rich cation‐disordered rock‐salt (DRX) materials have emerged as promising candidates for high‐capacity oxide cathodes. Their fluorinated variants have shown improved cycling stability with effectively suppressed oxygen loss. However, a comprehensive understanding of how fluorination impacts the multiscale structure and lithium transportation in DRX remains elusive in experiments. Herein, the neutron total scattering technique in conjunction with the advanced reverse Monte Carlo (RMC) fitting method is employed to characterize the intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 (LTNNO) and the fluorinated Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 (LTNNOF). Through rigorous statistical analysis, the multiscale structural evolution upon fluorination is quantified from atomic (≤5 Å) to long‐range scale (≈100 Å). The local Li‐rich environments around F induce a modest 2.4% increment in the number of fast Li 0TM (transition metal) channels. Crucially, at a broader scale, the proportion of 0TM channels participating in percolation increases significantly from 2.9% in LTNNO to 8.7% in LTNNOF. Fluorination improves the capacity release mainly through merging isolated fast Li channels into the percolation network. This work experimentally unravels the multiscale mechanism of fluorination‐induced performance improvement in DRX materials and highlights the necessity of adopting an advanced RMC fitting method to obtain a full view of the complex structural features in developing high‐capacity DRX cathodes. The intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 and its fluorinated counterpart Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 is nicely depicted within a supercell containing 64 000 atoms through neutron total scattering in conjunction with reverse Monte Carlo modeling. Following a quantitative investigation, the enhanced capacity upon fluorination is shown to originate from the expanded lithium percolation network achieved by bridging isolated diffusion channels.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301636</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; cation-disordered oxide ; Cations ; Channels ; ENERGY STORAGE ; Fluorination ; Fluorine ; fluorine doping ; Lithium ; lithium-ion batteries ; neutron total scattering ; Percolation ; Statistical analysis ; Transition metals</subject><ispartof>Advanced energy materials, 2023-12, Vol.13 (47), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3446-866f0cb73cb2e8086175ca021f95a6093a433a578db34342d6338fb4a952f85d3</citedby><cites>FETCH-LOGICAL-c3446-866f0cb73cb2e8086175ca021f95a6093a433a578db34342d6338fb4a952f85d3</cites><orcidid>0000-0001-8513-518X ; 0000-0003-4224-3361 ; 000000018513518X ; 0000000342243361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202301636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202301636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2251579$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Sichen</creatorcontrib><creatorcontrib>Sun, Yujian</creatorcontrib><creatorcontrib>Wang, Junyang</creatorcontrib><creatorcontrib>Shi, Dekai</creatorcontrib><creatorcontrib>Li, Yapei</creatorcontrib><creatorcontrib>Jiang, Xiangkang</creatorcontrib><creatorcontrib>Wang, Fangwei</creatorcontrib><creatorcontrib>Zhang, Yuanpeng</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Wang, Xuelong</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Chen, Liquan</creatorcontrib><creatorcontrib>Huang, Xuejie</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide</title><title>Advanced energy materials</title><description>Li‐rich cation‐disordered rock‐salt (DRX) materials have emerged as promising candidates for high‐capacity oxide cathodes. Their fluorinated variants have shown improved cycling stability with effectively suppressed oxygen loss. However, a comprehensive understanding of how fluorination impacts the multiscale structure and lithium transportation in DRX remains elusive in experiments. Herein, the neutron total scattering technique in conjunction with the advanced reverse Monte Carlo (RMC) fitting method is employed to characterize the intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 (LTNNO) and the fluorinated Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 (LTNNOF). Through rigorous statistical analysis, the multiscale structural evolution upon fluorination is quantified from atomic (≤5 Å) to long‐range scale (≈100 Å). The local Li‐rich environments around F induce a modest 2.4% increment in the number of fast Li 0TM (transition metal) channels. Crucially, at a broader scale, the proportion of 0TM channels participating in percolation increases significantly from 2.9% in LTNNO to 8.7% in LTNNOF. Fluorination improves the capacity release mainly through merging isolated fast Li channels into the percolation network. This work experimentally unravels the multiscale mechanism of fluorination‐induced performance improvement in DRX materials and highlights the necessity of adopting an advanced RMC fitting method to obtain a full view of the complex structural features in developing high‐capacity DRX cathodes. The intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 and its fluorinated counterpart Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 is nicely depicted within a supercell containing 64 000 atoms through neutron total scattering in conjunction with reverse Monte Carlo modeling. Following a quantitative investigation, the enhanced capacity upon fluorination is shown to originate from the expanded lithium percolation network achieved by bridging isolated diffusion channels.</description><subject>Cathodes</subject><subject>cation-disordered oxide</subject><subject>Cations</subject><subject>Channels</subject><subject>ENERGY STORAGE</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>fluorine doping</subject><subject>Lithium</subject><subject>lithium-ion batteries</subject><subject>neutron total scattering</subject><subject>Percolation</subject><subject>Statistical analysis</subject><subject>Transition metals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAjEUhhujiQTZum50DfY2nZklIqgJyEJcN51OhylhWmwHlZ2P4DP6JJZgcOnZnJOT7z-XH4BLjAYYIXIjtW0GBBGKMKf8BHQwx6zPM4ZOjzUl56AXwgrFYDlGlHaAW9QazrSqpTWhga6Ck_XWeWM1vHMbY5ewch62ERrbyChdwqlpa7Nt4HPrvFxqeKtr-WYiZSwcydY4-_35dWeC86X2kY-92pUazj9MqS_AWSXXQfd-cxe8TMaL0UN_Or9_HA2nfUUZ4_2M8wqpIqWqIDpDGcdpoiQiuMoTyVFOJaNUJmlWFpRRRkpOaVYVTOYJqbKkpF1wdZjrQmtEUKaNPypnrVatICTBSZpH6PoAbbx73erQipXbehvvEiRHOKUJj2u6YHCglHcheF2JjTeN9DuBkdibL_bmi6P5UZAfBO9mrXf_0GI4fpr9aX8A9NSHzA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jiao, Sichen</creator><creator>Sun, Yujian</creator><creator>Wang, Junyang</creator><creator>Shi, Dekai</creator><creator>Li, Yapei</creator><creator>Jiang, Xiangkang</creator><creator>Wang, Fangwei</creator><creator>Zhang, Yuanpeng</creator><creator>Liu, Jue</creator><creator>Wang, Xuelong</creator><creator>Yu, Xiqian</creator><creator>Li, Hong</creator><creator>Chen, Liquan</creator><creator>Huang, Xuejie</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8513-518X</orcidid><orcidid>https://orcid.org/0000-0003-4224-3361</orcidid><orcidid>https://orcid.org/000000018513518X</orcidid><orcidid>https://orcid.org/0000000342243361</orcidid></search><sort><creationdate>20231201</creationdate><title>The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide</title><author>Jiao, Sichen ; Sun, Yujian ; Wang, Junyang ; Shi, Dekai ; Li, Yapei ; Jiang, Xiangkang ; Wang, Fangwei ; Zhang, Yuanpeng ; Liu, Jue ; Wang, Xuelong ; Yu, Xiqian ; Li, Hong ; Chen, Liquan ; Huang, Xuejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3446-866f0cb73cb2e8086175ca021f95a6093a433a578db34342d6338fb4a952f85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>cation-disordered oxide</topic><topic>Cations</topic><topic>Channels</topic><topic>ENERGY STORAGE</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>fluorine doping</topic><topic>Lithium</topic><topic>lithium-ion batteries</topic><topic>neutron total scattering</topic><topic>Percolation</topic><topic>Statistical analysis</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Sichen</creatorcontrib><creatorcontrib>Sun, Yujian</creatorcontrib><creatorcontrib>Wang, Junyang</creatorcontrib><creatorcontrib>Shi, Dekai</creatorcontrib><creatorcontrib>Li, Yapei</creatorcontrib><creatorcontrib>Jiang, Xiangkang</creatorcontrib><creatorcontrib>Wang, Fangwei</creatorcontrib><creatorcontrib>Zhang, Yuanpeng</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Wang, Xuelong</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Chen, Liquan</creatorcontrib><creatorcontrib>Huang, Xuejie</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Sichen</au><au>Sun, Yujian</au><au>Wang, Junyang</au><au>Shi, Dekai</au><au>Li, Yapei</au><au>Jiang, Xiangkang</au><au>Wang, Fangwei</au><au>Zhang, Yuanpeng</au><au>Liu, Jue</au><au>Wang, Xuelong</au><au>Yu, Xiqian</au><au>Li, Hong</au><au>Chen, Liquan</au><au>Huang, Xuejie</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide</atitle><jtitle>Advanced energy materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>47</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Li‐rich cation‐disordered rock‐salt (DRX) materials have emerged as promising candidates for high‐capacity oxide cathodes. Their fluorinated variants have shown improved cycling stability with effectively suppressed oxygen loss. However, a comprehensive understanding of how fluorination impacts the multiscale structure and lithium transportation in DRX remains elusive in experiments. Herein, the neutron total scattering technique in conjunction with the advanced reverse Monte Carlo (RMC) fitting method is employed to characterize the intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 (LTNNO) and the fluorinated Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 (LTNNOF). Through rigorous statistical analysis, the multiscale structural evolution upon fluorination is quantified from atomic (≤5 Å) to long‐range scale (≈100 Å). The local Li‐rich environments around F induce a modest 2.4% increment in the number of fast Li 0TM (transition metal) channels. Crucially, at a broader scale, the proportion of 0TM channels participating in percolation increases significantly from 2.9% in LTNNO to 8.7% in LTNNOF. Fluorination improves the capacity release mainly through merging isolated fast Li channels into the percolation network. This work experimentally unravels the multiscale mechanism of fluorination‐induced performance improvement in DRX materials and highlights the necessity of adopting an advanced RMC fitting method to obtain a full view of the complex structural features in developing high‐capacity DRX cathodes. The intricate structure of Li1.16Ti0.37Ni0.37Nb0.1O2 and its fluorinated counterpart Li1.2Ti0.35Ni0.35Nb0.1O1.8F0.2 is nicely depicted within a supercell containing 64 000 atoms through neutron total scattering in conjunction with reverse Monte Carlo modeling. Following a quantitative investigation, the enhanced capacity upon fluorination is shown to originate from the expanded lithium percolation network achieved by bridging isolated diffusion channels.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301636</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8513-518X</orcidid><orcidid>https://orcid.org/0000-0003-4224-3361</orcidid><orcidid>https://orcid.org/000000018513518X</orcidid><orcidid>https://orcid.org/0000000342243361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-12, Vol.13 (47), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_2251579
source Wiley
subjects Cathodes
cation-disordered oxide
Cations
Channels
ENERGY STORAGE
Fluorination
Fluorine
fluorine doping
Lithium
lithium-ion batteries
neutron total scattering
Percolation
Statistical analysis
Transition metals
title The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mechanism%20of%20Fluorine%20Doping%20for%20the%20Enhanced%20Lithium%20Storage%20Behavior%20in%20Cation%E2%80%90Disordered%20Cathode%20Oxide&rft.jtitle=Advanced%20energy%20materials&rft.au=Jiao,%20Sichen&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-12-01&rft.volume=13&rft.issue=47&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301636&rft_dat=%3Cproquest_osti_%3E2901735643%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901735643&rft_id=info:pmid/&rfr_iscdi=true