Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-01, Vol.119 (2)
Hauptverfasser: Graczykowski, B., Alzina, F., Gomis-Bresco, J., Sotomayor Torres, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 119
creator Graczykowski, B.
Alzina, F.
Gomis-Bresco, J.
Sotomayor Torres, C. M.
description In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.
doi_str_mv 10.1063/1.4939825
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22494911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121912379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-dedfb359427838df2add1273c1101013552163d556a9ef40ff26046a5f8cdd4d3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsHv0HAk4eteclmd3OUYlUoeNFziPlDU9pkTbJKv72RFuQdBoYfw7xB6BbIAkjHHmDRCiYGys_QDMggmp5zco5mhFBoBtGLS3SV85YQgIGJGXIrH3yx2O7s3oaCVVC7Q_YZR4dLmmw1DB6znUzEeUpO6WrpOOXiNf5R3zZjH3AMtjG-BmQfawAeNzHEUAmdDrmoXb5GF66KvTnpHH2snt6XL8367fl1-bhuNBu60hhr3CfjoqX9wAbjqDIGaM80AKnHOKfQMcN5p4R1LXGOdqTtFHeDNqY1bI7ujrmxFpRZ19f0RscQrC6S0la0AuCfGlP8mmwuchunVItnSYGCAMp6Uan7I6VTzDlZJ8fk9yodJBD5N7YEeRqb_QIyqnE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121912379</pqid></control><display><type>article</type><title>Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Graczykowski, B. ; Alzina, F. ; Gomis-Bresco, J. ; Sotomayor Torres, C. M.</creator><creatorcontrib>Graczykowski, B. ; Alzina, F. ; Gomis-Bresco, J. ; Sotomayor Torres, C. M.</creatorcontrib><description>In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4939825</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic propagation ; Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTALS ; Damping ; EIGENFREQUENCY ; ELECTRONIC STRUCTURE ; FINITE ELEMENT METHOD ; Frequency response ; GEOMETRY ; Leaky modes ; LOSSES ; Mathematical analysis ; REFLECTION ; Resonant frequencies ; SOUND WAVES ; SUBSTRATES ; Surface acoustic waves ; Surface waves ; SURFACES ; TUNING ; WAVE PROPAGATION</subject><ispartof>Journal of applied physics, 2016-01, Vol.119 (2)</ispartof><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-dedfb359427838df2add1273c1101013552163d556a9ef40ff26046a5f8cdd4d3</citedby><cites>FETCH-LOGICAL-c386t-dedfb359427838df2add1273c1101013552163d556a9ef40ff26046a5f8cdd4d3</cites><orcidid>0000-0001-9986-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22494911$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Graczykowski, B.</creatorcontrib><creatorcontrib>Alzina, F.</creatorcontrib><creatorcontrib>Gomis-Bresco, J.</creatorcontrib><creatorcontrib>Sotomayor Torres, C. M.</creatorcontrib><title>Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals</title><title>Journal of applied physics</title><description>In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.</description><subject>Acoustic propagation</subject><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTALS</subject><subject>Damping</subject><subject>EIGENFREQUENCY</subject><subject>ELECTRONIC STRUCTURE</subject><subject>FINITE ELEMENT METHOD</subject><subject>Frequency response</subject><subject>GEOMETRY</subject><subject>Leaky modes</subject><subject>LOSSES</subject><subject>Mathematical analysis</subject><subject>REFLECTION</subject><subject>Resonant frequencies</subject><subject>SOUND WAVES</subject><subject>SUBSTRATES</subject><subject>Surface acoustic waves</subject><subject>Surface waves</subject><subject>SURFACES</subject><subject>TUNING</subject><subject>WAVE PROPAGATION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsHv0HAk4eteclmd3OUYlUoeNFziPlDU9pkTbJKv72RFuQdBoYfw7xB6BbIAkjHHmDRCiYGys_QDMggmp5zco5mhFBoBtGLS3SV85YQgIGJGXIrH3yx2O7s3oaCVVC7Q_YZR4dLmmw1DB6znUzEeUpO6WrpOOXiNf5R3zZjH3AMtjG-BmQfawAeNzHEUAmdDrmoXb5GF66KvTnpHH2snt6XL8367fl1-bhuNBu60hhr3CfjoqX9wAbjqDIGaM80AKnHOKfQMcN5p4R1LXGOdqTtFHeDNqY1bI7ujrmxFpRZ19f0RscQrC6S0la0AuCfGlP8mmwuchunVItnSYGCAMp6Uan7I6VTzDlZJ8fk9yodJBD5N7YEeRqb_QIyqnE8</recordid><startdate>20160114</startdate><enddate>20160114</enddate><creator>Graczykowski, B.</creator><creator>Alzina, F.</creator><creator>Gomis-Bresco, J.</creator><creator>Sotomayor Torres, C. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9986-2716</orcidid></search><sort><creationdate>20160114</creationdate><title>Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals</title><author>Graczykowski, B. ; Alzina, F. ; Gomis-Bresco, J. ; Sotomayor Torres, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-dedfb359427838df2add1273c1101013552163d556a9ef40ff26046a5f8cdd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic propagation</topic><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTALS</topic><topic>Damping</topic><topic>EIGENFREQUENCY</topic><topic>ELECTRONIC STRUCTURE</topic><topic>FINITE ELEMENT METHOD</topic><topic>Frequency response</topic><topic>GEOMETRY</topic><topic>Leaky modes</topic><topic>LOSSES</topic><topic>Mathematical analysis</topic><topic>REFLECTION</topic><topic>Resonant frequencies</topic><topic>SOUND WAVES</topic><topic>SUBSTRATES</topic><topic>Surface acoustic waves</topic><topic>Surface waves</topic><topic>SURFACES</topic><topic>TUNING</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graczykowski, B.</creatorcontrib><creatorcontrib>Alzina, F.</creatorcontrib><creatorcontrib>Gomis-Bresco, J.</creatorcontrib><creatorcontrib>Sotomayor Torres, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graczykowski, B.</au><au>Alzina, F.</au><au>Gomis-Bresco, J.</au><au>Sotomayor Torres, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals</atitle><jtitle>Journal of applied physics</jtitle><date>2016-01-14</date><risdate>2016</risdate><volume>119</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4939825</doi><orcidid>https://orcid.org/0000-0001-9986-2716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-01, Vol.119 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22494911
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acoustic propagation
Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CRYSTALS
Damping
EIGENFREQUENCY
ELECTRONIC STRUCTURE
FINITE ELEMENT METHOD
Frequency response
GEOMETRY
Leaky modes
LOSSES
Mathematical analysis
REFLECTION
Resonant frequencies
SOUND WAVES
SUBSTRATES
Surface acoustic waves
Surface waves
SURFACES
TUNING
WAVE PROPAGATION
title Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20true%20and%20pseudo%20surface%20acoustic%20waves%20in%20one-dimensional%20phononic%20crystals&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Graczykowski,%20B.&rft.date=2016-01-14&rft.volume=119&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4939825&rft_dat=%3Cproquest_osti_%3E2121912379%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121912379&rft_id=info:pmid/&rfr_iscdi=true