Entanglement evolution of a two-mode Gaussian system in various thermal environments
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by tempera...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1694 |
creator | Mihaescu, Tatiana Isar, Aurelian |
description | We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment. |
doi_str_mv | 10.1063/1.4937235 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22494340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123779936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2015-2dbc8ca0aa33e4c11a7ab99893078e237c23e3f3e66909e488ed9173b3885f703</originalsourceid><addsrcrecordid>eNpNjkFLwzAYhoMoWKcH_0HAc2eSL22So4y5CQMvE7yVLP3qMtpEm3Tiv3eiB0_P5eV5H0JuOZtzVsM9n0sDSkB1RgpeVbxUNa_PScGYkaWQ8HpJrlI6MCaMUrog22XINrz1OGDIFI-xn7KPgcaOWpo_YznEFunKTil5G2j6ShkH6gM92tHHKdG8x3GwPcVw9GMMP5p0TS462ye8-eOMvDwut4t1uXlePS0eNqUTjFelaHdOO8usBUDpOLfK7ozRBpjSKEA5AQgdYF0bZlBqja3hCnagddUpBjNy9-uNKfsmOZ_R7V0MAV1uhJBGgvy3eh_jx4QpN4c4jeEU1gh-elHGQA3fBwpdWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2123779936</pqid></control><display><type>conference_proceeding</type><title>Entanglement evolution of a two-mode Gaussian system in various thermal environments</title><source>AIP Journals (American Institute of Physics)</source><creator>Mihaescu, Tatiana ; Isar, Aurelian</creator><creatorcontrib>Mihaescu, Tatiana ; Isar, Aurelian</creatorcontrib><description>We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4937235</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; ASYMPTOTIC SOLUTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISSIPATION FACTOR ; Evolution ; GAUSSIAN PROCESSES ; QUANTUM ENTANGLEMENT ; Quantum mechanics ; Quantum theory ; SURVIVAL TIME ; TEMPERATURE DEPENDENCE ; Thermal environments</subject><ispartof>AIP conference proceedings, 2015, Vol.1694 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2015-2dbc8ca0aa33e4c11a7ab99893078e237c23e3f3e66909e488ed9173b3885f703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22494340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihaescu, Tatiana</creatorcontrib><creatorcontrib>Isar, Aurelian</creatorcontrib><title>Entanglement evolution of a two-mode Gaussian system in various thermal environments</title><title>AIP conference proceedings</title><description>We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.</description><subject>Asymptotic properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISSIPATION FACTOR</subject><subject>Evolution</subject><subject>GAUSSIAN PROCESSES</subject><subject>QUANTUM ENTANGLEMENT</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>SURVIVAL TIME</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Thermal environments</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNjkFLwzAYhoMoWKcH_0HAc2eSL22So4y5CQMvE7yVLP3qMtpEm3Tiv3eiB0_P5eV5H0JuOZtzVsM9n0sDSkB1RgpeVbxUNa_PScGYkaWQ8HpJrlI6MCaMUrog22XINrz1OGDIFI-xn7KPgcaOWpo_YznEFunKTil5G2j6ShkH6gM92tHHKdG8x3GwPcVw9GMMP5p0TS462ye8-eOMvDwut4t1uXlePS0eNqUTjFelaHdOO8usBUDpOLfK7ozRBpjSKEA5AQgdYF0bZlBqja3hCnagddUpBjNy9-uNKfsmOZ_R7V0MAV1uhJBGgvy3eh_jx4QpN4c4jeEU1gh-elHGQA3fBwpdWA</recordid><startdate>20151207</startdate><enddate>20151207</enddate><creator>Mihaescu, Tatiana</creator><creator>Isar, Aurelian</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151207</creationdate><title>Entanglement evolution of a two-mode Gaussian system in various thermal environments</title><author>Mihaescu, Tatiana ; Isar, Aurelian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2015-2dbc8ca0aa33e4c11a7ab99893078e237c23e3f3e66909e488ed9173b3885f703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISSIPATION FACTOR</topic><topic>Evolution</topic><topic>GAUSSIAN PROCESSES</topic><topic>QUANTUM ENTANGLEMENT</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>SURVIVAL TIME</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihaescu, Tatiana</creatorcontrib><creatorcontrib>Isar, Aurelian</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihaescu, Tatiana</au><au>Isar, Aurelian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Entanglement evolution of a two-mode Gaussian system in various thermal environments</atitle><btitle>AIP conference proceedings</btitle><date>2015-12-07</date><risdate>2015</risdate><volume>1694</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4937235</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2015, Vol.1694 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22494340 |
source | AIP Journals (American Institute of Physics) |
subjects | Asymptotic properties ASYMPTOTIC SOLUTIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DISSIPATION FACTOR Evolution GAUSSIAN PROCESSES QUANTUM ENTANGLEMENT Quantum mechanics Quantum theory SURVIVAL TIME TEMPERATURE DEPENDENCE Thermal environments |
title | Entanglement evolution of a two-mode Gaussian system in various thermal environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Entanglement%20evolution%20of%20a%20two-mode%20Gaussian%20system%20in%20various%20thermal%20environments&rft.btitle=AIP%20conference%20proceedings&rft.au=Mihaescu,%20Tatiana&rft.date=2015-12-07&rft.volume=1694&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4937235&rft_dat=%3Cproquest_osti_%3E2123779936%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123779936&rft_id=info:pmid/&rfr_iscdi=true |