Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-08, Vol.143 (8), p.084109-084109
Hauptverfasser: Jiang, Huijun, Hou, Zhonghuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084109
container_issue 8
container_start_page 084109
container_title The Journal of chemical physics
container_volume 143
creator Jiang, Huijun
Hou, Zhonghuai
description Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.
doi_str_mv 10.1063/1.4929471
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22493561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124102122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EoqWw4AdQJDawSPHYiROzqypeUoENrC3XmbQpaRxsR9C_J6gtrEa6OjrS3EvIOdAxUMFvYJxIJpMMDsgQaC7jTEh6SIaUMoiloGJATrxfUUohY8kxGTDBWZ4zOiQvM-0WGHuja4ywrYL-rnQdLZz9Csvoo2owVMZHtuwj3S6xwdtoss-jZ9sEjKba1TbyoSs2p-So1LXHs90dkff7u7fpYzx7fXiaTmax4ZkIsShTowspuGZpInnJtKEFIqSlKaVIc5nkkEOhQVCW8Hmh9TyBtGBGl73ApHxELrde60OlvKkCmqWxTYMmKMZ6Zyqgp662VOvsZ4c-qHXlDda1btB2XkFGJZc5pPRf-IeubOea_gfFgCXQN8lYT11vKeOs9w5L1bpqrd1GAVW_UyhQuyl69mJn7OZrLP7Ifff8ByC1gP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124102122</pqid></control><display><type>article</type><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Huijun ; Hou, Zhonghuai</creator><creatorcontrib>Jiang, Huijun ; Hou, Zhonghuai</creatorcontrib><description>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4929471</identifier><identifier>PMID: 26328820</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CATALYSTS ; CHEMICAL VAPOR DEPOSITION ; Computer simulation ; CRYSTAL DEFECTS ; CRYSTAL GROWTH ; CRYSTAL LATTICES ; Epitaxial growth ; EPITAXY ; GRAPHENE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Kinetics ; MONTE CARLO METHOD ; Monte Carlo simulation ; Nanotubes ; Organic chemistry ; Reaction kinetics ; SCANNING TUNNELING MICROSCOPY ; Spatial data ; SUBSTRATES ; SURFACES ; TIME RESOLUTION ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>The Journal of chemical physics, 2015-08, Vol.143 (8), p.084109-084109</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</citedby><cites>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26328820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22493561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</description><subject>CATALYSTS</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Computer simulation</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL GROWTH</subject><subject>CRYSTAL LATTICES</subject><subject>Epitaxial growth</subject><subject>EPITAXY</subject><subject>GRAPHENE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Kinetics</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo simulation</subject><subject>Nanotubes</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>SCANNING TUNNELING MICROSCOPY</subject><subject>Spatial data</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>TIME RESOLUTION</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRS0EoqWw4AdQJDawSPHYiROzqypeUoENrC3XmbQpaRxsR9C_J6gtrEa6OjrS3EvIOdAxUMFvYJxIJpMMDsgQaC7jTEh6SIaUMoiloGJATrxfUUohY8kxGTDBWZ4zOiQvM-0WGHuja4ywrYL-rnQdLZz9Csvoo2owVMZHtuwj3S6xwdtoss-jZ9sEjKba1TbyoSs2p-So1LXHs90dkff7u7fpYzx7fXiaTmax4ZkIsShTowspuGZpInnJtKEFIqSlKaVIc5nkkEOhQVCW8Hmh9TyBtGBGl73ApHxELrde60OlvKkCmqWxTYMmKMZ6Zyqgp662VOvsZ4c-qHXlDda1btB2XkFGJZc5pPRf-IeubOea_gfFgCXQN8lYT11vKeOs9w5L1bpqrd1GAVW_UyhQuyl69mJn7OZrLP7Ifff8ByC1gP4</recordid><startdate>20150828</startdate><enddate>20150828</enddate><creator>Jiang, Huijun</creator><creator>Hou, Zhonghuai</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150828</creationdate><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><author>Jiang, Huijun ; Hou, Zhonghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CATALYSTS</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Computer simulation</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL GROWTH</topic><topic>CRYSTAL LATTICES</topic><topic>Epitaxial growth</topic><topic>EPITAXY</topic><topic>GRAPHENE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Kinetics</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo simulation</topic><topic>Nanotubes</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>SCANNING TUNNELING MICROSCOPY</topic><topic>Spatial data</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>TIME RESOLUTION</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Huijun</au><au>Hou, Zhonghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-08-28</date><risdate>2015</risdate><volume>143</volume><issue>8</issue><spage>084109</spage><epage>084109</epage><pages>084109-084109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26328820</pmid><doi>10.1063/1.4929471</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-08, Vol.143 (8), p.084109-084109
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22493561
source AIP Journals Complete; Alma/SFX Local Collection
subjects CATALYSTS
CHEMICAL VAPOR DEPOSITION
Computer simulation
CRYSTAL DEFECTS
CRYSTAL GROWTH
CRYSTAL LATTICES
Epitaxial growth
EPITAXY
GRAPHENE
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Kinetics
MONTE CARLO METHOD
Monte Carlo simulation
Nanotubes
Organic chemistry
Reaction kinetics
SCANNING TUNNELING MICROSCOPY
Spatial data
SUBSTRATES
SURFACES
TIME RESOLUTION
TWO-DIMENSIONAL SYSTEMS
title Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20epitaxial%20growth%20kinetics%20of%20graphene:%20A%20kinetic%20Monte%20Carlo%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jiang,%20Huijun&rft.date=2015-08-28&rft.volume=143&rft.issue=8&rft.spage=084109&rft.epage=084109&rft.pages=084109-084109&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4929471&rft_dat=%3Cproquest_osti_%3E2124102122%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124102122&rft_id=info:pmid/26328820&rfr_iscdi=true