Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study
Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-08, Vol.143 (8), p.084109-084109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084109 |
---|---|
container_issue | 8 |
container_start_page | 084109 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Jiang, Huijun Hou, Zhonghuai |
description | Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment. |
doi_str_mv | 10.1063/1.4929471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22493561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124102122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EoqWw4AdQJDawSPHYiROzqypeUoENrC3XmbQpaRxsR9C_J6gtrEa6OjrS3EvIOdAxUMFvYJxIJpMMDsgQaC7jTEh6SIaUMoiloGJATrxfUUohY8kxGTDBWZ4zOiQvM-0WGHuja4ywrYL-rnQdLZz9Csvoo2owVMZHtuwj3S6xwdtoss-jZ9sEjKba1TbyoSs2p-So1LXHs90dkff7u7fpYzx7fXiaTmax4ZkIsShTowspuGZpInnJtKEFIqSlKaVIc5nkkEOhQVCW8Hmh9TyBtGBGl73ApHxELrde60OlvKkCmqWxTYMmKMZ6Zyqgp662VOvsZ4c-qHXlDda1btB2XkFGJZc5pPRf-IeubOea_gfFgCXQN8lYT11vKeOs9w5L1bpqrd1GAVW_UyhQuyl69mJn7OZrLP7Ifff8ByC1gP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124102122</pqid></control><display><type>article</type><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Huijun ; Hou, Zhonghuai</creator><creatorcontrib>Jiang, Huijun ; Hou, Zhonghuai</creatorcontrib><description>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4929471</identifier><identifier>PMID: 26328820</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CATALYSTS ; CHEMICAL VAPOR DEPOSITION ; Computer simulation ; CRYSTAL DEFECTS ; CRYSTAL GROWTH ; CRYSTAL LATTICES ; Epitaxial growth ; EPITAXY ; GRAPHENE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Kinetics ; MONTE CARLO METHOD ; Monte Carlo simulation ; Nanotubes ; Organic chemistry ; Reaction kinetics ; SCANNING TUNNELING MICROSCOPY ; Spatial data ; SUBSTRATES ; SURFACES ; TIME RESOLUTION ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>The Journal of chemical physics, 2015-08, Vol.143 (8), p.084109-084109</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</citedby><cites>FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26328820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22493561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</description><subject>CATALYSTS</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Computer simulation</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL GROWTH</subject><subject>CRYSTAL LATTICES</subject><subject>Epitaxial growth</subject><subject>EPITAXY</subject><subject>GRAPHENE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Kinetics</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo simulation</subject><subject>Nanotubes</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>SCANNING TUNNELING MICROSCOPY</subject><subject>Spatial data</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>TIME RESOLUTION</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRS0EoqWw4AdQJDawSPHYiROzqypeUoENrC3XmbQpaRxsR9C_J6gtrEa6OjrS3EvIOdAxUMFvYJxIJpMMDsgQaC7jTEh6SIaUMoiloGJATrxfUUohY8kxGTDBWZ4zOiQvM-0WGHuja4ywrYL-rnQdLZz9Csvoo2owVMZHtuwj3S6xwdtoss-jZ9sEjKba1TbyoSs2p-So1LXHs90dkff7u7fpYzx7fXiaTmax4ZkIsShTowspuGZpInnJtKEFIqSlKaVIc5nkkEOhQVCW8Hmh9TyBtGBGl73ApHxELrde60OlvKkCmqWxTYMmKMZ6Zyqgp662VOvsZ4c-qHXlDda1btB2XkFGJZc5pPRf-IeubOea_gfFgCXQN8lYT11vKeOs9w5L1bpqrd1GAVW_UyhQuyl69mJn7OZrLP7Ifff8ByC1gP4</recordid><startdate>20150828</startdate><enddate>20150828</enddate><creator>Jiang, Huijun</creator><creator>Hou, Zhonghuai</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150828</creationdate><title>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</title><author>Jiang, Huijun ; Hou, Zhonghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6f5cad963a25493f2ac0dee15fcf9658948181da160243bdaab415d2cafc37c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CATALYSTS</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Computer simulation</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL GROWTH</topic><topic>CRYSTAL LATTICES</topic><topic>Epitaxial growth</topic><topic>EPITAXY</topic><topic>GRAPHENE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Kinetics</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo simulation</topic><topic>Nanotubes</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>SCANNING TUNNELING MICROSCOPY</topic><topic>Spatial data</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>TIME RESOLUTION</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Huijun</au><au>Hou, Zhonghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-08-28</date><risdate>2015</risdate><volume>143</volume><issue>8</issue><spage>084109</spage><epage>084109</epage><pages>084109-084109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C1-attachment for concave growth-front segments and C5-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26328820</pmid><doi>10.1063/1.4929471</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-08, Vol.143 (8), p.084109-084109 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22493561 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CATALYSTS CHEMICAL VAPOR DEPOSITION Computer simulation CRYSTAL DEFECTS CRYSTAL GROWTH CRYSTAL LATTICES Epitaxial growth EPITAXY GRAPHENE INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Kinetics MONTE CARLO METHOD Monte Carlo simulation Nanotubes Organic chemistry Reaction kinetics SCANNING TUNNELING MICROSCOPY Spatial data SUBSTRATES SURFACES TIME RESOLUTION TWO-DIMENSIONAL SYSTEMS |
title | Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20epitaxial%20growth%20kinetics%20of%20graphene:%20A%20kinetic%20Monte%20Carlo%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jiang,%20Huijun&rft.date=2015-08-28&rft.volume=143&rft.issue=8&rft.spage=084109&rft.epage=084109&rft.pages=084109-084109&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4929471&rft_dat=%3Cproquest_osti_%3E2124102122%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124102122&rft_id=info:pmid/26328820&rfr_iscdi=true |