Exchange splitting of the interaction energy and the multipole expansion of the wave function
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calcu...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-10, Vol.143 (15), p.154106-154106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154106 |
---|---|
container_issue | 15 |
container_start_page | 154106 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Gniewek, Piotr Jeziorski, Bogumił |
description | The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e(-R-1)R(j0 + j1R(-1) + j2R(-2) + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong value of j2, and diverges for higher jn. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general. |
doi_str_mv | 10.1063/1.4931809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22493122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123861764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-525fdd5dda39ec186495b48f2439638c51bd3fe4c79967a630739369be24b7893</originalsourceid><addsrcrecordid>eNpFkTlPxDAQhS0EguUo-AMoEg0UWXzFsUu04pKQaKBEluNMdo2ydogdjn9P9gCqKeZ7TzPvIXRK8JRgwa7IlCtGJFY7aEKwVHkpFN5FE4wpyZXA4gAdxviGMSYl5fvogIpRIJWYoNebL7swfg5Z7FqXkvPzLDRZWkDmfILe2OSCz8BDP__OjK_Xq-XQJteFFjL46oyPK2Sr-jQfkDWDX-uO0V5j2ggn23mEXm5vnmf3-ePT3cPs-jG3jJOUF7Ro6rqoa8MUWCLH64qKy4ZypgSTtiBVzRrgtlRKlEYwXDLFhKqA8qqUih2h841viMnpaF0Cu7DBe7BJU7pKh9KRuthQXR_eB4hJL1200LbGQxiiHsMpOZO8oP-Gf-hbGHo__qApoUwKUgo-UpcbyvYhxh4a3fVuafpvTbBeNaOJ3jYzsmdbx6FaQv1H_lbBfgCcC4aK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123861764</pqid></control><display><type>article</type><title>Exchange splitting of the interaction energy and the multipole expansion of the wave function</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gniewek, Piotr ; Jeziorski, Bogumił</creator><creatorcontrib>Gniewek, Piotr ; Jeziorski, Bogumił</creatorcontrib><description>The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e(-R-1)R(j0 + j1R(-1) + j2R(-2) + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong value of j2, and diverges for higher jn. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4931809</identifier><identifier>PMID: 26493896</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>APPROXIMATIONS ; Asymptotic series ; ATOMS ; CONVERGENCE ; ELECTRONS ; Exchanging ; HYDROGEN ; Hydrogen-based energy ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTEGRALS ; INTERACTIONS ; Mathematical analysis ; Organic chemistry ; Perturbation methods ; PERTURBATION THEORY ; Quantum chemistry ; Splitting ; SYMMETRY ; Systems analysis ; WAVE FUNCTIONS</subject><ispartof>The Journal of chemical physics, 2015-10, Vol.143 (15), p.154106-154106</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-525fdd5dda39ec186495b48f2439638c51bd3fe4c79967a630739369be24b7893</citedby><cites>FETCH-LOGICAL-c341t-525fdd5dda39ec186495b48f2439638c51bd3fe4c79967a630739369be24b7893</cites><orcidid>0000-0003-1065-6313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26493896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22493122$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gniewek, Piotr</creatorcontrib><creatorcontrib>Jeziorski, Bogumił</creatorcontrib><title>Exchange splitting of the interaction energy and the multipole expansion of the wave function</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e(-R-1)R(j0 + j1R(-1) + j2R(-2) + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong value of j2, and diverges for higher jn. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.</description><subject>APPROXIMATIONS</subject><subject>Asymptotic series</subject><subject>ATOMS</subject><subject>CONVERGENCE</subject><subject>ELECTRONS</subject><subject>Exchanging</subject><subject>HYDROGEN</subject><subject>Hydrogen-based energy</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTEGRALS</subject><subject>INTERACTIONS</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Perturbation methods</subject><subject>PERTURBATION THEORY</subject><subject>Quantum chemistry</subject><subject>Splitting</subject><subject>SYMMETRY</subject><subject>Systems analysis</subject><subject>WAVE FUNCTIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkTlPxDAQhS0EguUo-AMoEg0UWXzFsUu04pKQaKBEluNMdo2ydogdjn9P9gCqKeZ7TzPvIXRK8JRgwa7IlCtGJFY7aEKwVHkpFN5FE4wpyZXA4gAdxviGMSYl5fvogIpRIJWYoNebL7swfg5Z7FqXkvPzLDRZWkDmfILe2OSCz8BDP__OjK_Xq-XQJteFFjL46oyPK2Sr-jQfkDWDX-uO0V5j2ggn23mEXm5vnmf3-ePT3cPs-jG3jJOUF7Ro6rqoa8MUWCLH64qKy4ZypgSTtiBVzRrgtlRKlEYwXDLFhKqA8qqUih2h841viMnpaF0Cu7DBe7BJU7pKh9KRuthQXR_eB4hJL1200LbGQxiiHsMpOZO8oP-Gf-hbGHo__qApoUwKUgo-UpcbyvYhxh4a3fVuafpvTbBeNaOJ3jYzsmdbx6FaQv1H_lbBfgCcC4aK</recordid><startdate>20151021</startdate><enddate>20151021</enddate><creator>Gniewek, Piotr</creator><creator>Jeziorski, Bogumił</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1065-6313</orcidid></search><sort><creationdate>20151021</creationdate><title>Exchange splitting of the interaction energy and the multipole expansion of the wave function</title><author>Gniewek, Piotr ; Jeziorski, Bogumił</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-525fdd5dda39ec186495b48f2439638c51bd3fe4c79967a630739369be24b7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>APPROXIMATIONS</topic><topic>Asymptotic series</topic><topic>ATOMS</topic><topic>CONVERGENCE</topic><topic>ELECTRONS</topic><topic>Exchanging</topic><topic>HYDROGEN</topic><topic>Hydrogen-based energy</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTEGRALS</topic><topic>INTERACTIONS</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Perturbation methods</topic><topic>PERTURBATION THEORY</topic><topic>Quantum chemistry</topic><topic>Splitting</topic><topic>SYMMETRY</topic><topic>Systems analysis</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gniewek, Piotr</creatorcontrib><creatorcontrib>Jeziorski, Bogumił</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gniewek, Piotr</au><au>Jeziorski, Bogumił</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exchange splitting of the interaction energy and the multipole expansion of the wave function</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-10-21</date><risdate>2015</risdate><volume>143</volume><issue>15</issue><spage>154106</spage><epage>154106</epage><pages>154106-154106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e(-R-1)R(j0 + j1R(-1) + j2R(-2) + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong value of j2, and diverges for higher jn. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26493896</pmid><doi>10.1063/1.4931809</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1065-6313</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-10, Vol.143 (15), p.154106-154106 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22493122 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | APPROXIMATIONS Asymptotic series ATOMS CONVERGENCE ELECTRONS Exchanging HYDROGEN Hydrogen-based energy INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY INTEGRALS INTERACTIONS Mathematical analysis Organic chemistry Perturbation methods PERTURBATION THEORY Quantum chemistry Splitting SYMMETRY Systems analysis WAVE FUNCTIONS |
title | Exchange splitting of the interaction energy and the multipole expansion of the wave function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exchange%20splitting%20of%20the%20interaction%20energy%20and%20the%20multipole%20expansion%20of%20the%20wave%20function&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Gniewek,%20Piotr&rft.date=2015-10-21&rft.volume=143&rft.issue=15&rft.spage=154106&rft.epage=154106&rft.pages=154106-154106&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4931809&rft_dat=%3Cproquest_osti_%3E2123861764%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123861764&rft_id=info:pmid/26493896&rfr_iscdi=true |