Ring-polymer instanton theory of electron transfer in the nonadiabatic limit
We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-10, Vol.143 (13), p.134116-134116 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134116 |
---|---|
container_issue | 13 |
container_start_page | 134116 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Richardson, Jeremy O |
description | We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes' quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate. |
doi_str_mv | 10.1063/1.4932362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22489674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721346516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-204b23a56bc8af02ca6f10344a72bb6e069fa9a814d76d46ae41683f4f0794463</originalsourceid><addsrcrecordid>eNpN0U1rGzEQBmBREmrH7SF_ICz0khw2HUnj2d1jCekHGAIhPQutLNUyu5IryQf_-6xrN-QkGD28zAdj1xzuOZD8yu-xk0KS-MDmHNqubqiDCzYHELzuCGjGrnLeAgBvBH5kM0G4BAl8zlbPPvypd3E4jDZVPuSiQ4mhKhsb06GKrrKDNSUdS0mH7P6p43cVYtBrr3tdvKkGP_ryiV06PWT7-fwu2O_vjy8PP-vV049fD99WtUEUpRaAvZB6Sb1ptQNhNDkOElE3ou_JAnVOd7rluG5ojaQtcmqlQwdNh0hywb6ccmMuXmXjizUbE0OYOlVCYNtRg5O6Paldin_3Nhc1-mzsMOhg4z6raRdcIi35u8A3uo37FKYZlOBCtrSc3KTuTsqkmHOyTu2SH3U6KA7qeAjF1fkQk705J-770a7f5P_Ny1de_YBD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123865465</pqid></control><display><type>article</type><title>Ring-polymer instanton theory of electron transfer in the nonadiabatic limit</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Richardson, Jeremy O</creator><creatorcontrib>Richardson, Jeremy O</creatorcontrib><description>We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes' quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4932362</identifier><identifier>PMID: 26450301</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>COMPARATIVE EVALUATIONS ; ELECTRON TRANSFER ; EQUATIONS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Physics ; POLYMERS ; SEMICLASSICAL APPROXIMATION</subject><ispartof>The Journal of chemical physics, 2015-10, Vol.143 (13), p.134116-134116</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-204b23a56bc8af02ca6f10344a72bb6e069fa9a814d76d46ae41683f4f0794463</citedby><cites>FETCH-LOGICAL-c442t-204b23a56bc8af02ca6f10344a72bb6e069fa9a814d76d46ae41683f4f0794463</cites><orcidid>0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22489674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Jeremy O</creatorcontrib><title>Ring-polymer instanton theory of electron transfer in the nonadiabatic limit</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes' quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.</description><subject>COMPARATIVE EVALUATIONS</subject><subject>ELECTRON TRANSFER</subject><subject>EQUATIONS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Physics</subject><subject>POLYMERS</subject><subject>SEMICLASSICAL APPROXIMATION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpN0U1rGzEQBmBREmrH7SF_ICz0khw2HUnj2d1jCekHGAIhPQutLNUyu5IryQf_-6xrN-QkGD28zAdj1xzuOZD8yu-xk0KS-MDmHNqubqiDCzYHELzuCGjGrnLeAgBvBH5kM0G4BAl8zlbPPvypd3E4jDZVPuSiQ4mhKhsb06GKrrKDNSUdS0mH7P6p43cVYtBrr3tdvKkGP_ryiV06PWT7-fwu2O_vjy8PP-vV049fD99WtUEUpRaAvZB6Sb1ptQNhNDkOElE3ou_JAnVOd7rluG5ojaQtcmqlQwdNh0hywb6ccmMuXmXjizUbE0OYOlVCYNtRg5O6Paldin_3Nhc1-mzsMOhg4z6raRdcIi35u8A3uo37FKYZlOBCtrSc3KTuTsqkmHOyTu2SH3U6KA7qeAjF1fkQk705J-770a7f5P_Ny1de_YBD</recordid><startdate>20151007</startdate><enddate>20151007</enddate><creator>Richardson, Jeremy O</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20151007</creationdate><title>Ring-polymer instanton theory of electron transfer in the nonadiabatic limit</title><author>Richardson, Jeremy O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-204b23a56bc8af02ca6f10344a72bb6e069fa9a814d76d46ae41683f4f0794463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>COMPARATIVE EVALUATIONS</topic><topic>ELECTRON TRANSFER</topic><topic>EQUATIONS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Physics</topic><topic>POLYMERS</topic><topic>SEMICLASSICAL APPROXIMATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Jeremy O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Jeremy O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ring-polymer instanton theory of electron transfer in the nonadiabatic limit</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-10-07</date><risdate>2015</risdate><volume>143</volume><issue>13</issue><spage>134116</spage><epage>134116</epage><pages>134116-134116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes' quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26450301</pmid><doi>10.1063/1.4932362</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-10, Vol.143 (13), p.134116-134116 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22489674 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | COMPARATIVE EVALUATIONS ELECTRON TRANSFER EQUATIONS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Physics POLYMERS SEMICLASSICAL APPROXIMATION |
title | Ring-polymer instanton theory of electron transfer in the nonadiabatic limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ring-polymer%20instanton%20theory%20of%20electron%20transfer%20in%20the%20nonadiabatic%20limit&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Richardson,%20Jeremy%20O&rft.date=2015-10-07&rft.volume=143&rft.issue=13&rft.spage=134116&rft.epage=134116&rft.pages=134116-134116&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4932362&rft_dat=%3Cproquest_osti_%3E1721346516%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123865465&rft_id=info:pmid/26450301&rfr_iscdi=true |