Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-09, Vol.143 (11), p.114103-114103
Hauptverfasser: Kondorskiy, Alexey D, Nanbu, Shinkoh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114103
container_issue 11
container_start_page 114103
container_title The Journal of chemical physics
container_volume 143
creator Kondorskiy, Alexey D
Nanbu, Shinkoh
description We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.
doi_str_mv 10.1063/1.4930923
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22489590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1716253891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</originalsourceid><addsrcrecordid>eNpFkUtLJDEUhYM4jG3PLPwDUuBGF9Vz86hUZSniC4TZ9KxDOnVLo9VJm6QU_fUT6VZXF879OJzDIeSIwoKC5H_oQigOivE9MqPQqbqVCvbJDIDRWkmQB-QwpUcAoC0TP8kBk1w1suMzsrwc0eYYvLNmHN8qH7zpnVmZ7Gz1al6w2hj7hLnaxLAx90UOvpqS8_fVEMM7-uraTCk546tkTc4Yy-sX-TGYMeHv3Z2Tf1eXy4ub-u7v9e3F-V1tBbS5lgLUQIcOhFCDaRrLe2aGBhhDyXrEtkg9F4LZFpVkgkkE3vS9bVXXyZXlc3Ky9Q0pO52sy2gfbPC-VNKMiU41Cgp1uqVKhecJU9ZrlyyOo_EYpqRpSyVreKfot-EX-him6EsHzSgrcbumkHNytqVsDClFHPQmurWJb5qC_hhEU70bpLDHO8dptcb-i_xcgP8HG66EGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098525</pqid></control><display><type>article</type><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kondorskiy, Alexey D ; Nanbu, Shinkoh</creator><creatorcontrib>Kondorskiy, Alexey D ; Nanbu, Shinkoh</creatorcontrib><description>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4930923</identifier><identifier>PMID: 26395683</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACCURACY ; Adiabatic flow ; ALGORITHMS ; Atmospheric pressure ; Computer simulation ; EFFICIENCY ; Electrons ; Finite difference method ; Hessian matrices ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Mathematical models ; Models, Chemical ; Molecular Dynamics Simulation ; Normal Distribution ; Photoabsorption ; Propagation ; Quantum Theory ; SCATTERING ; SEMICLASSICAL APPROXIMATION ; SIMULATION ; SURFACES ; Trajectories ; WAVE PACKETS ; Wave power ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2015-09, Vol.143 (11), p.114103-114103</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</citedby><cites>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</cites><orcidid>0000-0002-8502-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26395683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22489590$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondorskiy, Alexey D</creatorcontrib><creatorcontrib>Nanbu, Shinkoh</creatorcontrib><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</description><subject>ACCURACY</subject><subject>Adiabatic flow</subject><subject>ALGORITHMS</subject><subject>Atmospheric pressure</subject><subject>Computer simulation</subject><subject>EFFICIENCY</subject><subject>Electrons</subject><subject>Finite difference method</subject><subject>Hessian matrices</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Normal Distribution</subject><subject>Photoabsorption</subject><subject>Propagation</subject><subject>Quantum Theory</subject><subject>SCATTERING</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>Trajectories</subject><subject>WAVE PACKETS</subject><subject>Wave power</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkUtLJDEUhYM4jG3PLPwDUuBGF9Vz86hUZSniC4TZ9KxDOnVLo9VJm6QU_fUT6VZXF879OJzDIeSIwoKC5H_oQigOivE9MqPQqbqVCvbJDIDRWkmQB-QwpUcAoC0TP8kBk1w1suMzsrwc0eYYvLNmHN8qH7zpnVmZ7Gz1al6w2hj7hLnaxLAx90UOvpqS8_fVEMM7-uraTCk546tkTc4Yy-sX-TGYMeHv3Z2Tf1eXy4ub-u7v9e3F-V1tBbS5lgLUQIcOhFCDaRrLe2aGBhhDyXrEtkg9F4LZFpVkgkkE3vS9bVXXyZXlc3Ky9Q0pO52sy2gfbPC-VNKMiU41Cgp1uqVKhecJU9ZrlyyOo_EYpqRpSyVreKfot-EX-him6EsHzSgrcbumkHNytqVsDClFHPQmurWJb5qC_hhEU70bpLDHO8dptcb-i_xcgP8HG66EGg</recordid><startdate>20150921</startdate><enddate>20150921</enddate><creator>Kondorskiy, Alexey D</creator><creator>Nanbu, Shinkoh</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8502-3193</orcidid></search><sort><creationdate>20150921</creationdate><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><author>Kondorskiy, Alexey D ; Nanbu, Shinkoh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACCURACY</topic><topic>Adiabatic flow</topic><topic>ALGORITHMS</topic><topic>Atmospheric pressure</topic><topic>Computer simulation</topic><topic>EFFICIENCY</topic><topic>Electrons</topic><topic>Finite difference method</topic><topic>Hessian matrices</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Normal Distribution</topic><topic>Photoabsorption</topic><topic>Propagation</topic><topic>Quantum Theory</topic><topic>SCATTERING</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>Trajectories</topic><topic>WAVE PACKETS</topic><topic>Wave power</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondorskiy, Alexey D</creatorcontrib><creatorcontrib>Nanbu, Shinkoh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondorskiy, Alexey D</au><au>Nanbu, Shinkoh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-09-21</date><risdate>2015</risdate><volume>143</volume><issue>11</issue><spage>114103</spage><epage>114103</epage><pages>114103-114103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26395683</pmid><doi>10.1063/1.4930923</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8502-3193</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-09, Vol.143 (11), p.114103-114103
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22489590
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects ACCURACY
Adiabatic flow
ALGORITHMS
Atmospheric pressure
Computer simulation
EFFICIENCY
Electrons
Finite difference method
Hessian matrices
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Mathematical models
Models, Chemical
Molecular Dynamics Simulation
Normal Distribution
Photoabsorption
Propagation
Quantum Theory
SCATTERING
SEMICLASSICAL APPROXIMATION
SIMULATION
SURFACES
Trajectories
WAVE PACKETS
Wave power
Wave propagation
title Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronically%20nonadiabatic%20wave%20packet%20propagation%20using%20frozen%20Gaussian%20scattering&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kondorskiy,%20Alexey%20D&rft.date=2015-09-21&rft.volume=143&rft.issue=11&rft.spage=114103&rft.epage=114103&rft.pages=114103-114103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4930923&rft_dat=%3Cproquest_osti_%3E1716253891%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124098525&rft_id=info:pmid/26395683&rfr_iscdi=true