Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporat...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-09, Vol.143 (11), p.114103-114103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114103 |
---|---|
container_issue | 11 |
container_start_page | 114103 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Kondorskiy, Alexey D Nanbu, Shinkoh |
description | We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory. |
doi_str_mv | 10.1063/1.4930923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22489590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1716253891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</originalsourceid><addsrcrecordid>eNpFkUtLJDEUhYM4jG3PLPwDUuBGF9Vz86hUZSniC4TZ9KxDOnVLo9VJm6QU_fUT6VZXF879OJzDIeSIwoKC5H_oQigOivE9MqPQqbqVCvbJDIDRWkmQB-QwpUcAoC0TP8kBk1w1suMzsrwc0eYYvLNmHN8qH7zpnVmZ7Gz1al6w2hj7hLnaxLAx90UOvpqS8_fVEMM7-uraTCk546tkTc4Yy-sX-TGYMeHv3Z2Tf1eXy4ub-u7v9e3F-V1tBbS5lgLUQIcOhFCDaRrLe2aGBhhDyXrEtkg9F4LZFpVkgkkE3vS9bVXXyZXlc3Ky9Q0pO52sy2gfbPC-VNKMiU41Cgp1uqVKhecJU9ZrlyyOo_EYpqRpSyVreKfot-EX-him6EsHzSgrcbumkHNytqVsDClFHPQmurWJb5qC_hhEU70bpLDHO8dptcb-i_xcgP8HG66EGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098525</pqid></control><display><type>article</type><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kondorskiy, Alexey D ; Nanbu, Shinkoh</creator><creatorcontrib>Kondorskiy, Alexey D ; Nanbu, Shinkoh</creatorcontrib><description>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4930923</identifier><identifier>PMID: 26395683</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACCURACY ; Adiabatic flow ; ALGORITHMS ; Atmospheric pressure ; Computer simulation ; EFFICIENCY ; Electrons ; Finite difference method ; Hessian matrices ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Mathematical models ; Models, Chemical ; Molecular Dynamics Simulation ; Normal Distribution ; Photoabsorption ; Propagation ; Quantum Theory ; SCATTERING ; SEMICLASSICAL APPROXIMATION ; SIMULATION ; SURFACES ; Trajectories ; WAVE PACKETS ; Wave power ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2015-09, Vol.143 (11), p.114103-114103</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</citedby><cites>FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</cites><orcidid>0000-0002-8502-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26395683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22489590$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondorskiy, Alexey D</creatorcontrib><creatorcontrib>Nanbu, Shinkoh</creatorcontrib><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</description><subject>ACCURACY</subject><subject>Adiabatic flow</subject><subject>ALGORITHMS</subject><subject>Atmospheric pressure</subject><subject>Computer simulation</subject><subject>EFFICIENCY</subject><subject>Electrons</subject><subject>Finite difference method</subject><subject>Hessian matrices</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Normal Distribution</subject><subject>Photoabsorption</subject><subject>Propagation</subject><subject>Quantum Theory</subject><subject>SCATTERING</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>Trajectories</subject><subject>WAVE PACKETS</subject><subject>Wave power</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkUtLJDEUhYM4jG3PLPwDUuBGF9Vz86hUZSniC4TZ9KxDOnVLo9VJm6QU_fUT6VZXF879OJzDIeSIwoKC5H_oQigOivE9MqPQqbqVCvbJDIDRWkmQB-QwpUcAoC0TP8kBk1w1suMzsrwc0eYYvLNmHN8qH7zpnVmZ7Gz1al6w2hj7hLnaxLAx90UOvpqS8_fVEMM7-uraTCk546tkTc4Yy-sX-TGYMeHv3Z2Tf1eXy4ub-u7v9e3F-V1tBbS5lgLUQIcOhFCDaRrLe2aGBhhDyXrEtkg9F4LZFpVkgkkE3vS9bVXXyZXlc3Ky9Q0pO52sy2gfbPC-VNKMiU41Cgp1uqVKhecJU9ZrlyyOo_EYpqRpSyVreKfot-EX-him6EsHzSgrcbumkHNytqVsDClFHPQmurWJb5qC_hhEU70bpLDHO8dptcb-i_xcgP8HG66EGg</recordid><startdate>20150921</startdate><enddate>20150921</enddate><creator>Kondorskiy, Alexey D</creator><creator>Nanbu, Shinkoh</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8502-3193</orcidid></search><sort><creationdate>20150921</creationdate><title>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</title><author>Kondorskiy, Alexey D ; Nanbu, Shinkoh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-6409f1f80449fa55c3d2af5022e62dee755cd3442c7e962426e035ddc79886bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACCURACY</topic><topic>Adiabatic flow</topic><topic>ALGORITHMS</topic><topic>Atmospheric pressure</topic><topic>Computer simulation</topic><topic>EFFICIENCY</topic><topic>Electrons</topic><topic>Finite difference method</topic><topic>Hessian matrices</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Normal Distribution</topic><topic>Photoabsorption</topic><topic>Propagation</topic><topic>Quantum Theory</topic><topic>SCATTERING</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>Trajectories</topic><topic>WAVE PACKETS</topic><topic>Wave power</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondorskiy, Alexey D</creatorcontrib><creatorcontrib>Nanbu, Shinkoh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondorskiy, Alexey D</au><au>Nanbu, Shinkoh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-09-21</date><risdate>2015</risdate><volume>143</volume><issue>11</issue><spage>114103</spage><epage>114103</epage><pages>114103-114103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26395683</pmid><doi>10.1063/1.4930923</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8502-3193</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-09, Vol.143 (11), p.114103-114103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22489590 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | ACCURACY Adiabatic flow ALGORITHMS Atmospheric pressure Computer simulation EFFICIENCY Electrons Finite difference method Hessian matrices INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Mathematical models Models, Chemical Molecular Dynamics Simulation Normal Distribution Photoabsorption Propagation Quantum Theory SCATTERING SEMICLASSICAL APPROXIMATION SIMULATION SURFACES Trajectories WAVE PACKETS Wave power Wave propagation |
title | Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronically%20nonadiabatic%20wave%20packet%20propagation%20using%20frozen%20Gaussian%20scattering&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kondorskiy,%20Alexey%20D&rft.date=2015-09-21&rft.volume=143&rft.issue=11&rft.spage=114103&rft.epage=114103&rft.pages=114103-114103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4930923&rft_dat=%3Cproquest_osti_%3E1716253891%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124098525&rft_id=info:pmid/26395683&rfr_iscdi=true |