Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators
Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis al...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-07, Vol.107 (3) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 107 |
creator | Staruch, M. Kassner, C. Fackler, S. Takeuchi, I. Bussmann, K. Lofland, S. E. Dolabdjian, C. Lacomb, R. Finkel, P. |
description | Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology. |
doi_str_mv | 10.1063/1.4927309 |
format | Article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01633305v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKsH_0HAk4etmZ0ku3sspbZCwYueQ5pN2sh2U5JU8N-7S4t4GmbeN8ObR8gjsBkwiS8w401ZIWuuyARYVRUIUF-TCWMMC9kIuCV3KX0NrSgRJ8QsnbMmJxocPehdb7M31HnbtVT3LT1Gm9IpWur7ixxsp9MIpTxqNFoTeud3p6i3naV5P5DOd4dBSKHXOcR0T26c7pJ9uNQp-XxdfizWxeZ99baYbwqDosoFsFZuBZcgYSudrbXlljsuGmN47VC0klfSaSGxQlmWrJTMIJO6qkUrAFqckqfz3TAYVMn4bM1-cNcPD6qy5LVEAQP1fKb2ulPH6A86_qigvVrPN2qcMZCIyMT3P9bEkFK07m8BmBrzVqAueeMv5wdxTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</creator><creatorcontrib>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</creatorcontrib><description>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4927309</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ANISOTROPY ; BEAMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DETECTION ; Engineering Sciences ; HYSTERESIS ; LENGTH ; MAGNETIC FIELDS ; MAGNETIZATION ; QUALITY FACTOR ; RESONATORS ; SENSORS ; SIGNAL-TO-NOISE RATIO ; STRESSES ; THIN FILMS</subject><ispartof>Applied physics letters, 2015-07, Vol.107 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</citedby><cites>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</cites><orcidid>0000-0003-1427-8313 ; 0000-0003-3066-6199 ; 0000-0002-4896-0620 ; 0000-0002-1024-5103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01633305$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22486351$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Staruch, M.</creatorcontrib><creatorcontrib>Kassner, C.</creatorcontrib><creatorcontrib>Fackler, S.</creatorcontrib><creatorcontrib>Takeuchi, I.</creatorcontrib><creatorcontrib>Bussmann, K.</creatorcontrib><creatorcontrib>Lofland, S. E.</creatorcontrib><creatorcontrib>Dolabdjian, C.</creatorcontrib><creatorcontrib>Lacomb, R.</creatorcontrib><creatorcontrib>Finkel, P.</creatorcontrib><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><title>Applied physics letters</title><description>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</description><subject>ANISOTROPY</subject><subject>BEAMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DETECTION</subject><subject>Engineering Sciences</subject><subject>HYSTERESIS</subject><subject>LENGTH</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIZATION</subject><subject>QUALITY FACTOR</subject><subject>RESONATORS</subject><subject>SENSORS</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>STRESSES</subject><subject>THIN FILMS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKsH_0HAk4etmZ0ku3sspbZCwYueQ5pN2sh2U5JU8N-7S4t4GmbeN8ObR8gjsBkwiS8w401ZIWuuyARYVRUIUF-TCWMMC9kIuCV3KX0NrSgRJ8QsnbMmJxocPehdb7M31HnbtVT3LT1Gm9IpWur7ixxsp9MIpTxqNFoTeud3p6i3naV5P5DOd4dBSKHXOcR0T26c7pJ9uNQp-XxdfizWxeZ99baYbwqDosoFsFZuBZcgYSudrbXlljsuGmN47VC0klfSaSGxQlmWrJTMIJO6qkUrAFqckqfz3TAYVMn4bM1-cNcPD6qy5LVEAQP1fKb2ulPH6A86_qigvVrPN2qcMZCIyMT3P9bEkFK07m8BmBrzVqAueeMv5wdxTw</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Staruch, M.</creator><creator>Kassner, C.</creator><creator>Fackler, S.</creator><creator>Takeuchi, I.</creator><creator>Bussmann, K.</creator><creator>Lofland, S. E.</creator><creator>Dolabdjian, C.</creator><creator>Lacomb, R.</creator><creator>Finkel, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1427-8313</orcidid><orcidid>https://orcid.org/0000-0003-3066-6199</orcidid><orcidid>https://orcid.org/0000-0002-4896-0620</orcidid><orcidid>https://orcid.org/0000-0002-1024-5103</orcidid></search><sort><creationdate>20150720</creationdate><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><author>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANISOTROPY</topic><topic>BEAMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DETECTION</topic><topic>Engineering Sciences</topic><topic>HYSTERESIS</topic><topic>LENGTH</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIZATION</topic><topic>QUALITY FACTOR</topic><topic>RESONATORS</topic><topic>SENSORS</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>STRESSES</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staruch, M.</creatorcontrib><creatorcontrib>Kassner, C.</creatorcontrib><creatorcontrib>Fackler, S.</creatorcontrib><creatorcontrib>Takeuchi, I.</creatorcontrib><creatorcontrib>Bussmann, K.</creatorcontrib><creatorcontrib>Lofland, S. E.</creatorcontrib><creatorcontrib>Dolabdjian, C.</creatorcontrib><creatorcontrib>Lacomb, R.</creatorcontrib><creatorcontrib>Finkel, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staruch, M.</au><au>Kassner, C.</au><au>Fackler, S.</au><au>Takeuchi, I.</au><au>Bussmann, K.</au><au>Lofland, S. E.</au><au>Dolabdjian, C.</au><au>Lacomb, R.</au><au>Finkel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</atitle><jtitle>Applied physics letters</jtitle><date>2015-07-20</date><risdate>2015</risdate><volume>107</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4927309</doi><orcidid>https://orcid.org/0000-0003-1427-8313</orcidid><orcidid>https://orcid.org/0000-0003-3066-6199</orcidid><orcidid>https://orcid.org/0000-0002-4896-0620</orcidid><orcidid>https://orcid.org/0000-0002-1024-5103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-07, Vol.107 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22486351 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ANISOTROPY BEAMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DETECTION Engineering Sciences HYSTERESIS LENGTH MAGNETIC FIELDS MAGNETIZATION QUALITY FACTOR RESONATORS SENSORS SIGNAL-TO-NOISE RATIO STRESSES THIN FILMS |
title | Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20magnetic%20field%20and%20pressure%20in%20magnetoelastic%20stress%20reconfigurable%20thin%20film%20resonators&rft.jtitle=Applied%20physics%20letters&rft.au=Staruch,%20M.&rft.date=2015-07-20&rft.volume=107&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4927309&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_01633305v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |