Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators

Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-07, Vol.107 (3)
Hauptverfasser: Staruch, M., Kassner, C., Fackler, S., Takeuchi, I., Bussmann, K., Lofland, S. E., Dolabdjian, C., Lacomb, R., Finkel, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 107
creator Staruch, M.
Kassner, C.
Fackler, S.
Takeuchi, I.
Bussmann, K.
Lofland, S. E.
Dolabdjian, C.
Lacomb, R.
Finkel, P.
description Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.
doi_str_mv 10.1063/1.4927309
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01633305v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKsH_0HAk4etmZ0ku3sspbZCwYueQ5pN2sh2U5JU8N-7S4t4GmbeN8ObR8gjsBkwiS8w401ZIWuuyARYVRUIUF-TCWMMC9kIuCV3KX0NrSgRJ8QsnbMmJxocPehdb7M31HnbtVT3LT1Gm9IpWur7ixxsp9MIpTxqNFoTeud3p6i3naV5P5DOd4dBSKHXOcR0T26c7pJ9uNQp-XxdfizWxeZ99baYbwqDosoFsFZuBZcgYSudrbXlljsuGmN47VC0klfSaSGxQlmWrJTMIJO6qkUrAFqckqfz3TAYVMn4bM1-cNcPD6qy5LVEAQP1fKb2ulPH6A86_qigvVrPN2qcMZCIyMT3P9bEkFK07m8BmBrzVqAueeMv5wdxTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</creator><creatorcontrib>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</creatorcontrib><description>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4927309</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ANISOTROPY ; BEAMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DETECTION ; Engineering Sciences ; HYSTERESIS ; LENGTH ; MAGNETIC FIELDS ; MAGNETIZATION ; QUALITY FACTOR ; RESONATORS ; SENSORS ; SIGNAL-TO-NOISE RATIO ; STRESSES ; THIN FILMS</subject><ispartof>Applied physics letters, 2015-07, Vol.107 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</citedby><cites>FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</cites><orcidid>0000-0003-1427-8313 ; 0000-0003-3066-6199 ; 0000-0002-4896-0620 ; 0000-0002-1024-5103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01633305$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22486351$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Staruch, M.</creatorcontrib><creatorcontrib>Kassner, C.</creatorcontrib><creatorcontrib>Fackler, S.</creatorcontrib><creatorcontrib>Takeuchi, I.</creatorcontrib><creatorcontrib>Bussmann, K.</creatorcontrib><creatorcontrib>Lofland, S. E.</creatorcontrib><creatorcontrib>Dolabdjian, C.</creatorcontrib><creatorcontrib>Lacomb, R.</creatorcontrib><creatorcontrib>Finkel, P.</creatorcontrib><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><title>Applied physics letters</title><description>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</description><subject>ANISOTROPY</subject><subject>BEAMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DETECTION</subject><subject>Engineering Sciences</subject><subject>HYSTERESIS</subject><subject>LENGTH</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIZATION</subject><subject>QUALITY FACTOR</subject><subject>RESONATORS</subject><subject>SENSORS</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>STRESSES</subject><subject>THIN FILMS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKsH_0HAk4etmZ0ku3sspbZCwYueQ5pN2sh2U5JU8N-7S4t4GmbeN8ObR8gjsBkwiS8w401ZIWuuyARYVRUIUF-TCWMMC9kIuCV3KX0NrSgRJ8QsnbMmJxocPehdb7M31HnbtVT3LT1Gm9IpWur7ixxsp9MIpTxqNFoTeud3p6i3naV5P5DOd4dBSKHXOcR0T26c7pJ9uNQp-XxdfizWxeZ99baYbwqDosoFsFZuBZcgYSudrbXlljsuGmN47VC0klfSaSGxQlmWrJTMIJO6qkUrAFqckqfz3TAYVMn4bM1-cNcPD6qy5LVEAQP1fKb2ulPH6A86_qigvVrPN2qcMZCIyMT3P9bEkFK07m8BmBrzVqAueeMv5wdxTw</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Staruch, M.</creator><creator>Kassner, C.</creator><creator>Fackler, S.</creator><creator>Takeuchi, I.</creator><creator>Bussmann, K.</creator><creator>Lofland, S. E.</creator><creator>Dolabdjian, C.</creator><creator>Lacomb, R.</creator><creator>Finkel, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1427-8313</orcidid><orcidid>https://orcid.org/0000-0003-3066-6199</orcidid><orcidid>https://orcid.org/0000-0002-4896-0620</orcidid><orcidid>https://orcid.org/0000-0002-1024-5103</orcidid></search><sort><creationdate>20150720</creationdate><title>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</title><author>Staruch, M. ; Kassner, C. ; Fackler, S. ; Takeuchi, I. ; Bussmann, K. ; Lofland, S. E. ; Dolabdjian, C. ; Lacomb, R. ; Finkel, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-10d6b546161b6fe8ae4e4f459cc48f35d6476fa563736220260c306a785d511d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANISOTROPY</topic><topic>BEAMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DETECTION</topic><topic>Engineering Sciences</topic><topic>HYSTERESIS</topic><topic>LENGTH</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIZATION</topic><topic>QUALITY FACTOR</topic><topic>RESONATORS</topic><topic>SENSORS</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>STRESSES</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staruch, M.</creatorcontrib><creatorcontrib>Kassner, C.</creatorcontrib><creatorcontrib>Fackler, S.</creatorcontrib><creatorcontrib>Takeuchi, I.</creatorcontrib><creatorcontrib>Bussmann, K.</creatorcontrib><creatorcontrib>Lofland, S. E.</creatorcontrib><creatorcontrib>Dolabdjian, C.</creatorcontrib><creatorcontrib>Lacomb, R.</creatorcontrib><creatorcontrib>Finkel, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staruch, M.</au><au>Kassner, C.</au><au>Fackler, S.</au><au>Takeuchi, I.</au><au>Bussmann, K.</au><au>Lofland, S. E.</au><au>Dolabdjian, C.</au><au>Lacomb, R.</au><au>Finkel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators</atitle><jtitle>Applied physics letters</jtitle><date>2015-07-20</date><risdate>2015</risdate><volume>107</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus further improve the limit of detection and advance development of magnetic field sensing technology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4927309</doi><orcidid>https://orcid.org/0000-0003-1427-8313</orcidid><orcidid>https://orcid.org/0000-0003-3066-6199</orcidid><orcidid>https://orcid.org/0000-0002-4896-0620</orcidid><orcidid>https://orcid.org/0000-0002-1024-5103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-07, Vol.107 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22486351
source AIP Journals Complete; Alma/SFX Local Collection
subjects ANISOTROPY
BEAMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DETECTION
Engineering Sciences
HYSTERESIS
LENGTH
MAGNETIC FIELDS
MAGNETIZATION
QUALITY FACTOR
RESONATORS
SENSORS
SIGNAL-TO-NOISE RATIO
STRESSES
THIN FILMS
title Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20magnetic%20field%20and%20pressure%20in%20magnetoelastic%20stress%20reconfigurable%20thin%20film%20resonators&rft.jtitle=Applied%20physics%20letters&rft.au=Staruch,%20M.&rft.date=2015-07-20&rft.volume=107&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4927309&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_01633305v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true