Molecular ion sources for low energy semiconductor ion implantation (invited)
Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2016-02, Vol.87 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 87 |
creator | Hershcovitch, A. Gushenets, V. I. Bugaev, A. S. Oks, E. M. Vizir, A. Yushkov, G. Yu Seleznev, D. N. Kulevoy, T. V. Kozlov, A. Kropachev, G. N. Kuibeda, R. P. Minaev, S. Dugin, S. Alexeyenko, O. |
description | Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described. |
doi_str_mv | 10.1063/1.4931719 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22483001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22483001</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_224830013</originalsourceid><addsrcrecordid>eNqNzLsKwjAYBeAgCtbL4BsEXHRozd_EXmZRXLq5l5CmGomJJKni21vRB_AshwMfB6EFkARIRjeQsJJCDuUARUCKMs6zlA5RRAhlcZazYowm3l9Jny1AhKrKaik6zR1W1mBvOyekx611WNsnlka68wt7eVPCmqYTwX6hut01N4GHz1gp81BBNusZGrVcezn_9RQtD_vT7hhbH1TtRY_EpT8yUoQ6TVlBCQH6n3oDzhhDXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</creator><creatorcontrib>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</creatorcontrib><description>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4931719</identifier><language>eng</language><publisher>United States</publisher><subject>BEAM CURRENTS ; BORON IONS ; CARBON ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; ION BEAMS ; ION IMPLANTATION ; MOLECULAR IONS ; PHOSPHINES ; SEMICONDUCTOR MATERIALS ; SPACE CHARGE</subject><ispartof>Review of scientific instruments, 2016-02, Vol.87 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22483001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hershcovitch, A.</creatorcontrib><creatorcontrib>Gushenets, V. I.</creatorcontrib><creatorcontrib>Bugaev, A. S.</creatorcontrib><creatorcontrib>Oks, E. M.</creatorcontrib><creatorcontrib>Vizir, A.</creatorcontrib><creatorcontrib>Yushkov, G. Yu</creatorcontrib><creatorcontrib>Seleznev, D. N.</creatorcontrib><creatorcontrib>Kulevoy, T. V.</creatorcontrib><creatorcontrib>Kozlov, A.</creatorcontrib><creatorcontrib>Kropachev, G. N.</creatorcontrib><creatorcontrib>Kuibeda, R. P.</creatorcontrib><creatorcontrib>Minaev, S.</creatorcontrib><creatorcontrib>Dugin, S.</creatorcontrib><creatorcontrib>Alexeyenko, O.</creatorcontrib><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><title>Review of scientific instruments</title><description>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</description><subject>BEAM CURRENTS</subject><subject>BORON IONS</subject><subject>CARBON</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>ION BEAMS</subject><subject>ION IMPLANTATION</subject><subject>MOLECULAR IONS</subject><subject>PHOSPHINES</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SPACE CHARGE</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNzLsKwjAYBeAgCtbL4BsEXHRozd_EXmZRXLq5l5CmGomJJKni21vRB_AshwMfB6EFkARIRjeQsJJCDuUARUCKMs6zlA5RRAhlcZazYowm3l9Jny1AhKrKaik6zR1W1mBvOyekx611WNsnlka68wt7eVPCmqYTwX6hut01N4GHz1gp81BBNusZGrVcezn_9RQtD_vT7hhbH1TtRY_EpT8yUoQ6TVlBCQH6n3oDzhhDXw</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Hershcovitch, A.</creator><creator>Gushenets, V. I.</creator><creator>Bugaev, A. S.</creator><creator>Oks, E. M.</creator><creator>Vizir, A.</creator><creator>Yushkov, G. Yu</creator><creator>Seleznev, D. N.</creator><creator>Kulevoy, T. V.</creator><creator>Kozlov, A.</creator><creator>Kropachev, G. N.</creator><creator>Kuibeda, R. P.</creator><creator>Minaev, S.</creator><creator>Dugin, S.</creator><creator>Alexeyenko, O.</creator><scope>OTOTI</scope></search><sort><creationdate>20160215</creationdate><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><author>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_224830013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BEAM CURRENTS</topic><topic>BORON IONS</topic><topic>CARBON</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>ION BEAMS</topic><topic>ION IMPLANTATION</topic><topic>MOLECULAR IONS</topic><topic>PHOSPHINES</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SPACE CHARGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hershcovitch, A.</creatorcontrib><creatorcontrib>Gushenets, V. I.</creatorcontrib><creatorcontrib>Bugaev, A. S.</creatorcontrib><creatorcontrib>Oks, E. M.</creatorcontrib><creatorcontrib>Vizir, A.</creatorcontrib><creatorcontrib>Yushkov, G. Yu</creatorcontrib><creatorcontrib>Seleznev, D. N.</creatorcontrib><creatorcontrib>Kulevoy, T. V.</creatorcontrib><creatorcontrib>Kozlov, A.</creatorcontrib><creatorcontrib>Kropachev, G. N.</creatorcontrib><creatorcontrib>Kuibeda, R. P.</creatorcontrib><creatorcontrib>Minaev, S.</creatorcontrib><creatorcontrib>Dugin, S.</creatorcontrib><creatorcontrib>Alexeyenko, O.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hershcovitch, A.</au><au>Gushenets, V. I.</au><au>Bugaev, A. S.</au><au>Oks, E. M.</au><au>Vizir, A.</au><au>Yushkov, G. Yu</au><au>Seleznev, D. N.</au><au>Kulevoy, T. V.</au><au>Kozlov, A.</au><au>Kropachev, G. N.</au><au>Kuibeda, R. P.</au><au>Minaev, S.</au><au>Dugin, S.</au><au>Alexeyenko, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular ion sources for low energy semiconductor ion implantation (invited)</atitle><jtitle>Review of scientific instruments</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>87</volume><issue>2</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</abstract><cop>United States</cop><doi>10.1063/1.4931719</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2016-02, Vol.87 (2) |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_22483001 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | BEAM CURRENTS BORON IONS CARBON INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ION BEAMS ION IMPLANTATION MOLECULAR IONS PHOSPHINES SEMICONDUCTOR MATERIALS SPACE CHARGE |
title | Molecular ion sources for low energy semiconductor ion implantation (invited) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20ion%20sources%20for%20low%20energy%20semiconductor%20ion%20implantation%20(invited)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Hershcovitch,%20A.&rft.date=2016-02-15&rft.volume=87&rft.issue=2&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4931719&rft_dat=%3Costi%3E22483001%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |