Molecular ion sources for low energy semiconductor ion implantation (invited)

Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-02, Vol.87 (2)
Hauptverfasser: Hershcovitch, A., Gushenets, V. I., Bugaev, A. S., Oks, E. M., Vizir, A., Yushkov, G. Yu, Seleznev, D. N., Kulevoy, T. V., Kozlov, A., Kropachev, G. N., Kuibeda, R. P., Minaev, S., Dugin, S., Alexeyenko, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Review of scientific instruments
container_volume 87
creator Hershcovitch, A.
Gushenets, V. I.
Bugaev, A. S.
Oks, E. M.
Vizir, A.
Yushkov, G. Yu
Seleznev, D. N.
Kulevoy, T. V.
Kozlov, A.
Kropachev, G. N.
Kuibeda, R. P.
Minaev, S.
Dugin, S.
Alexeyenko, O.
description Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.
doi_str_mv 10.1063/1.4931719
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22483001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22483001</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_224830013</originalsourceid><addsrcrecordid>eNqNzLsKwjAYBeAgCtbL4BsEXHRozd_EXmZRXLq5l5CmGomJJKni21vRB_AshwMfB6EFkARIRjeQsJJCDuUARUCKMs6zlA5RRAhlcZazYowm3l9Jny1AhKrKaik6zR1W1mBvOyekx611WNsnlka68wt7eVPCmqYTwX6hut01N4GHz1gp81BBNusZGrVcezn_9RQtD_vT7hhbH1TtRY_EpT8yUoQ6TVlBCQH6n3oDzhhDXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</creator><creatorcontrib>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</creatorcontrib><description>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4931719</identifier><language>eng</language><publisher>United States</publisher><subject>BEAM CURRENTS ; BORON IONS ; CARBON ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; ION BEAMS ; ION IMPLANTATION ; MOLECULAR IONS ; PHOSPHINES ; SEMICONDUCTOR MATERIALS ; SPACE CHARGE</subject><ispartof>Review of scientific instruments, 2016-02, Vol.87 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22483001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hershcovitch, A.</creatorcontrib><creatorcontrib>Gushenets, V. I.</creatorcontrib><creatorcontrib>Bugaev, A. S.</creatorcontrib><creatorcontrib>Oks, E. M.</creatorcontrib><creatorcontrib>Vizir, A.</creatorcontrib><creatorcontrib>Yushkov, G. Yu</creatorcontrib><creatorcontrib>Seleznev, D. N.</creatorcontrib><creatorcontrib>Kulevoy, T. V.</creatorcontrib><creatorcontrib>Kozlov, A.</creatorcontrib><creatorcontrib>Kropachev, G. N.</creatorcontrib><creatorcontrib>Kuibeda, R. P.</creatorcontrib><creatorcontrib>Minaev, S.</creatorcontrib><creatorcontrib>Dugin, S.</creatorcontrib><creatorcontrib>Alexeyenko, O.</creatorcontrib><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><title>Review of scientific instruments</title><description>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</description><subject>BEAM CURRENTS</subject><subject>BORON IONS</subject><subject>CARBON</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>ION BEAMS</subject><subject>ION IMPLANTATION</subject><subject>MOLECULAR IONS</subject><subject>PHOSPHINES</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SPACE CHARGE</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNzLsKwjAYBeAgCtbL4BsEXHRozd_EXmZRXLq5l5CmGomJJKni21vRB_AshwMfB6EFkARIRjeQsJJCDuUARUCKMs6zlA5RRAhlcZazYowm3l9Jny1AhKrKaik6zR1W1mBvOyekx611WNsnlka68wt7eVPCmqYTwX6hut01N4GHz1gp81BBNusZGrVcezn_9RQtD_vT7hhbH1TtRY_EpT8yUoQ6TVlBCQH6n3oDzhhDXw</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Hershcovitch, A.</creator><creator>Gushenets, V. I.</creator><creator>Bugaev, A. S.</creator><creator>Oks, E. M.</creator><creator>Vizir, A.</creator><creator>Yushkov, G. Yu</creator><creator>Seleznev, D. N.</creator><creator>Kulevoy, T. V.</creator><creator>Kozlov, A.</creator><creator>Kropachev, G. N.</creator><creator>Kuibeda, R. P.</creator><creator>Minaev, S.</creator><creator>Dugin, S.</creator><creator>Alexeyenko, O.</creator><scope>OTOTI</scope></search><sort><creationdate>20160215</creationdate><title>Molecular ion sources for low energy semiconductor ion implantation (invited)</title><author>Hershcovitch, A. ; Gushenets, V. I. ; Bugaev, A. S. ; Oks, E. M. ; Vizir, A. ; Yushkov, G. Yu ; Seleznev, D. N. ; Kulevoy, T. V. ; Kozlov, A. ; Kropachev, G. N. ; Kuibeda, R. P. ; Minaev, S. ; Dugin, S. ; Alexeyenko, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_224830013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BEAM CURRENTS</topic><topic>BORON IONS</topic><topic>CARBON</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>ION BEAMS</topic><topic>ION IMPLANTATION</topic><topic>MOLECULAR IONS</topic><topic>PHOSPHINES</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SPACE CHARGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hershcovitch, A.</creatorcontrib><creatorcontrib>Gushenets, V. I.</creatorcontrib><creatorcontrib>Bugaev, A. S.</creatorcontrib><creatorcontrib>Oks, E. M.</creatorcontrib><creatorcontrib>Vizir, A.</creatorcontrib><creatorcontrib>Yushkov, G. Yu</creatorcontrib><creatorcontrib>Seleznev, D. N.</creatorcontrib><creatorcontrib>Kulevoy, T. V.</creatorcontrib><creatorcontrib>Kozlov, A.</creatorcontrib><creatorcontrib>Kropachev, G. N.</creatorcontrib><creatorcontrib>Kuibeda, R. P.</creatorcontrib><creatorcontrib>Minaev, S.</creatorcontrib><creatorcontrib>Dugin, S.</creatorcontrib><creatorcontrib>Alexeyenko, O.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hershcovitch, A.</au><au>Gushenets, V. I.</au><au>Bugaev, A. S.</au><au>Oks, E. M.</au><au>Vizir, A.</au><au>Yushkov, G. Yu</au><au>Seleznev, D. N.</au><au>Kulevoy, T. V.</au><au>Kozlov, A.</au><au>Kropachev, G. N.</au><au>Kuibeda, R. P.</au><au>Minaev, S.</au><au>Dugin, S.</au><au>Alexeyenko, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular ion sources for low energy semiconductor ion implantation (invited)</atitle><jtitle>Review of scientific instruments</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>87</volume><issue>2</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.</abstract><cop>United States</cop><doi>10.1063/1.4931719</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2016-02, Vol.87 (2)
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22483001
source AIP Journals Complete; Alma/SFX Local Collection
subjects BEAM CURRENTS
BORON IONS
CARBON
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
ION BEAMS
ION IMPLANTATION
MOLECULAR IONS
PHOSPHINES
SEMICONDUCTOR MATERIALS
SPACE CHARGE
title Molecular ion sources for low energy semiconductor ion implantation (invited)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20ion%20sources%20for%20low%20energy%20semiconductor%20ion%20implantation%20(invited)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Hershcovitch,%20A.&rft.date=2016-02-15&rft.volume=87&rft.issue=2&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4931719&rft_dat=%3Costi%3E22483001%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true