High fidelity modeling of thermal relaxation and dissociation of oxygen

A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2–O transition rates, generated by extensive trajectory simulations. Both O2–O and O2–O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2015-11, Vol.27 (11)
Hauptverfasser: Andrienko, Daniil A., Boyd, Iain D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 27
creator Andrienko, Daniil A.
Boyd, Iain D.
description A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2–O transition rates, generated by extensive trajectory simulations. Both O2–O and O2–O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O2–O2 collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O3 complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O2 vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.
doi_str_mv 10.1063/1.4935241
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123847842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-42313399a7acb3c3b99c875f6ad20b733eb71dd1181ea73986bbe8fde86b5bcf3</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsL_0HAlYupSd5MPpZStAoFN7oOmSTTpkwnNUmh_fdOacHVOzwOl8tF6JGSGSUcXuisVtCwml6hCSVSVYJzfn1iQSrOgd6iu5w3hBBQjE_Q4iOs1rgLzvehHPE2nmBY4djhsvZpa3qcfG8OpoQ4YDM47ELO0YbzY9Ti4bjywz266Uyf_cPlTtHP-9v3_KNafi0-56_LygIjpaoZUACljDC2BQutUlaKpuPGMdIKAN8K6hylknojQEnetl52zo_QtLaDKXo658Zcgs42FG_XNg6Dt0UzVktWN-Lf2qX4u_e56E3cp2EsphllIGshxyZT9Hy2bIo5J9_pXQpbk46aEn1aU1N9WRP-AM4JZgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123847842</pqid></control><display><type>article</type><title>High fidelity modeling of thermal relaxation and dissociation of oxygen</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Andrienko, Daniil A. ; Boyd, Iain D.</creator><creatorcontrib>Andrienko, Daniil A. ; Boyd, Iain D.</creatorcontrib><description>A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2–O transition rates, generated by extensive trajectory simulations. Both O2–O and O2–O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O2–O2 collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O3 complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O2 vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4935241</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; Atomic oxygen ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLISIONS ; Computer simulation ; Cooling flows (astrophysics) ; DIATOMS ; DISSOCIATION ; Fluid dynamics ; HARMONIC OSCILLATOR MODELS ; Harmonic oscillators ; HEAT ; HYPERSONIC FLOW ; Modelling ; OXYGEN ; Physics ; RELAXATION TIME ; SIMULATION ; Thermal relaxation ; VIBRATIONAL STATES</subject><ispartof>Physics of fluids (1994), 2015-11, Vol.27 (11)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-42313399a7acb3c3b99c875f6ad20b733eb71dd1181ea73986bbe8fde86b5bcf3</citedby><cites>FETCH-LOGICAL-c320t-42313399a7acb3c3b99c875f6ad20b733eb71dd1181ea73986bbe8fde86b5bcf3</cites><orcidid>0000-0002-3725-9206 ; 0000-0002-9321-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22482457$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrienko, Daniil A.</creatorcontrib><creatorcontrib>Boyd, Iain D.</creatorcontrib><title>High fidelity modeling of thermal relaxation and dissociation of oxygen</title><title>Physics of fluids (1994)</title><description>A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2–O transition rates, generated by extensive trajectory simulations. Both O2–O and O2–O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O2–O2 collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O3 complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O2 vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atomic oxygen</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLISIONS</subject><subject>Computer simulation</subject><subject>Cooling flows (astrophysics)</subject><subject>DIATOMS</subject><subject>DISSOCIATION</subject><subject>Fluid dynamics</subject><subject>HARMONIC OSCILLATOR MODELS</subject><subject>Harmonic oscillators</subject><subject>HEAT</subject><subject>HYPERSONIC FLOW</subject><subject>Modelling</subject><subject>OXYGEN</subject><subject>Physics</subject><subject>RELAXATION TIME</subject><subject>SIMULATION</subject><subject>Thermal relaxation</subject><subject>VIBRATIONAL STATES</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMoWKsL_0HAlYupSd5MPpZStAoFN7oOmSTTpkwnNUmh_fdOacHVOzwOl8tF6JGSGSUcXuisVtCwml6hCSVSVYJzfn1iQSrOgd6iu5w3hBBQjE_Q4iOs1rgLzvehHPE2nmBY4djhsvZpa3qcfG8OpoQ4YDM47ELO0YbzY9Ti4bjywz266Uyf_cPlTtHP-9v3_KNafi0-56_LygIjpaoZUACljDC2BQutUlaKpuPGMdIKAN8K6hylknojQEnetl52zo_QtLaDKXo658Zcgs42FG_XNg6Dt0UzVktWN-Lf2qX4u_e56E3cp2EsphllIGshxyZT9Hy2bIo5J9_pXQpbk46aEn1aU1N9WRP-AM4JZgA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Andrienko, Daniil A.</creator><creator>Boyd, Iain D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3725-9206</orcidid><orcidid>https://orcid.org/0000-0002-9321-2103</orcidid></search><sort><creationdate>20151101</creationdate><title>High fidelity modeling of thermal relaxation and dissociation of oxygen</title><author>Andrienko, Daniil A. ; Boyd, Iain D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-42313399a7acb3c3b99c875f6ad20b733eb71dd1181ea73986bbe8fde86b5bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atomic oxygen</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLISIONS</topic><topic>Computer simulation</topic><topic>Cooling flows (astrophysics)</topic><topic>DIATOMS</topic><topic>DISSOCIATION</topic><topic>Fluid dynamics</topic><topic>HARMONIC OSCILLATOR MODELS</topic><topic>Harmonic oscillators</topic><topic>HEAT</topic><topic>HYPERSONIC FLOW</topic><topic>Modelling</topic><topic>OXYGEN</topic><topic>Physics</topic><topic>RELAXATION TIME</topic><topic>SIMULATION</topic><topic>Thermal relaxation</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrienko, Daniil A.</creatorcontrib><creatorcontrib>Boyd, Iain D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrienko, Daniil A.</au><au>Boyd, Iain D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High fidelity modeling of thermal relaxation and dissociation of oxygen</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>27</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2–O transition rates, generated by extensive trajectory simulations. Both O2–O and O2–O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O2–O2 collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O3 complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O2 vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4935241</doi><orcidid>https://orcid.org/0000-0002-3725-9206</orcidid><orcidid>https://orcid.org/0000-0002-9321-2103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2015-11, Vol.27 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_osti_scitechconnect_22482457
source AIP Journals Complete; Alma/SFX Local Collection
subjects ATOMIC AND MOLECULAR PHYSICS
Atomic oxygen
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLISIONS
Computer simulation
Cooling flows (astrophysics)
DIATOMS
DISSOCIATION
Fluid dynamics
HARMONIC OSCILLATOR MODELS
Harmonic oscillators
HEAT
HYPERSONIC FLOW
Modelling
OXYGEN
Physics
RELAXATION TIME
SIMULATION
Thermal relaxation
VIBRATIONAL STATES
title High fidelity modeling of thermal relaxation and dissociation of oxygen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20fidelity%20modeling%20of%20thermal%20relaxation%20and%20dissociation%20of%20oxygen&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Andrienko,%20Daniil%20A.&rft.date=2015-11-01&rft.volume=27&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4935241&rft_dat=%3Cproquest_osti_%3E2123847842%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123847842&rft_id=info:pmid/&rfr_iscdi=true