Delay-induced stochastic bifurcations in a bistable system under white noise

In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2015-08, Vol.25 (8), p.083102-083102
Hauptverfasser: Sun, Zhongkui, Fu, Jin, Xiao, Yuzhu, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083102
container_issue 8
container_start_page 083102
container_title Chaos (Woodbury, N.Y.)
container_volume 25
creator Sun, Zhongkui
Fu, Jin
Xiao, Yuzhu
Xu, Wei
description In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.
doi_str_mv 10.1063/1.4927646
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124101416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-8574b4ea491221a6e5e5de261e336375c6b50a26a6919fc68d30a4fc1fe44adc3</originalsourceid><addsrcrecordid>eNpFkc1Lw0AQxRdRtFYP_gMS8KKH1J39SnKU-gkFL3peNpsJ3ZLuanaD9L83pbWeZhh-PN68R8gV0BlQxe9hJipWKKGOyARoWeWFKtnxdpciB0npGTmPcUUpBcblKTljirNSSj4hi0fszCZ3vhksNllMwS5NTM5mtWuH3prkgo-Z85kZLzGZusMsbmLCdTb4BvvsZ-kSZj64iBfkpDVdxMv9nJLP56eP-Wu-eH95mz8scssFpLyUhagFGlEBY2AUSpQNMgXIueKFtKqW1DBlVAVVa1XZcGpEa6FFIUxj-ZTc7HTD6FRHOxqwSxu8R5s0Y6JkHGCkbnfUVx--B4xJr1202HXGYxiihoJWvBJQyX_BA7oKQ-_HHzQDJoCCADVSdzvK9iHGHlv91bu16TcaqN4WoUHvixjZ673iUK-xOZB_yfNfV9CAew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124101416</pqid></control><display><type>article</type><title>Delay-induced stochastic bifurcations in a bistable system under white noise</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Zhongkui ; Fu, Jin ; Xiao, Yuzhu ; Xu, Wei</creator><creatorcontrib>Sun, Zhongkui ; Fu, Jin ; Xiao, Yuzhu ; Xu, Wei</creatorcontrib><description>In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4927646</identifier><identifier>PMID: 26328553</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Approximation ; BIFURCATION ; Bifurcation theory ; CHAPMAN-KOLMOGOROV EQUATION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; COMPUTERIZED SIMULATION ; Delay ; Economic models ; FEEDBACK ; FOKKER-PLANCK EQUATION ; MARKOV PROCESS ; Markov processes ; NOISE ; Noise intensity ; OSCILLATORS ; PROBABILITY DENSITY FUNCTIONS ; Probability theory ; Qualitative analysis ; RANDOMNESS ; TIME DELAY ; Time dependence ; Time lag ; White noise</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-08, Vol.25 (8), p.083102-083102</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-8574b4ea491221a6e5e5de261e336375c6b50a26a6919fc68d30a4fc1fe44adc3</citedby><cites>FETCH-LOGICAL-c341t-8574b4ea491221a6e5e5de261e336375c6b50a26a6919fc68d30a4fc1fe44adc3</cites><orcidid>0000-0001-5847-4426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26328553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22482311$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Fu, Jin</creatorcontrib><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Delay-induced stochastic bifurcations in a bistable system under white noise</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.</description><subject>Approximation</subject><subject>BIFURCATION</subject><subject>Bifurcation theory</subject><subject>CHAPMAN-KOLMOGOROV EQUATION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Delay</subject><subject>Economic models</subject><subject>FEEDBACK</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>MARKOV PROCESS</subject><subject>Markov processes</subject><subject>NOISE</subject><subject>Noise intensity</subject><subject>OSCILLATORS</subject><subject>PROBABILITY DENSITY FUNCTIONS</subject><subject>Probability theory</subject><subject>Qualitative analysis</subject><subject>RANDOMNESS</subject><subject>TIME DELAY</subject><subject>Time dependence</subject><subject>Time lag</subject><subject>White noise</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkc1Lw0AQxRdRtFYP_gMS8KKH1J39SnKU-gkFL3peNpsJ3ZLuanaD9L83pbWeZhh-PN68R8gV0BlQxe9hJipWKKGOyARoWeWFKtnxdpciB0npGTmPcUUpBcblKTljirNSSj4hi0fszCZ3vhksNllMwS5NTM5mtWuH3prkgo-Z85kZLzGZusMsbmLCdTb4BvvsZ-kSZj64iBfkpDVdxMv9nJLP56eP-Wu-eH95mz8scssFpLyUhagFGlEBY2AUSpQNMgXIueKFtKqW1DBlVAVVa1XZcGpEa6FFIUxj-ZTc7HTD6FRHOxqwSxu8R5s0Y6JkHGCkbnfUVx--B4xJr1202HXGYxiihoJWvBJQyX_BA7oKQ-_HHzQDJoCCADVSdzvK9iHGHlv91bu16TcaqN4WoUHvixjZ673iUK-xOZB_yfNfV9CAew</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Sun, Zhongkui</creator><creator>Fu, Jin</creator><creator>Xiao, Yuzhu</creator><creator>Xu, Wei</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5847-4426</orcidid></search><sort><creationdate>20150801</creationdate><title>Delay-induced stochastic bifurcations in a bistable system under white noise</title><author>Sun, Zhongkui ; Fu, Jin ; Xiao, Yuzhu ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-8574b4ea491221a6e5e5de261e336375c6b50a26a6919fc68d30a4fc1fe44adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>BIFURCATION</topic><topic>Bifurcation theory</topic><topic>CHAPMAN-KOLMOGOROV EQUATION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Delay</topic><topic>Economic models</topic><topic>FEEDBACK</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>MARKOV PROCESS</topic><topic>Markov processes</topic><topic>NOISE</topic><topic>Noise intensity</topic><topic>OSCILLATORS</topic><topic>PROBABILITY DENSITY FUNCTIONS</topic><topic>Probability theory</topic><topic>Qualitative analysis</topic><topic>RANDOMNESS</topic><topic>TIME DELAY</topic><topic>Time dependence</topic><topic>Time lag</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhongkui</creatorcontrib><creatorcontrib>Fu, Jin</creatorcontrib><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhongkui</au><au>Fu, Jin</au><au>Xiao, Yuzhu</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay-induced stochastic bifurcations in a bistable system under white noise</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>25</volume><issue>8</issue><spage>083102</spage><epage>083102</epage><pages>083102-083102</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26328553</pmid><doi>10.1063/1.4927646</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5847-4426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2015-08, Vol.25 (8), p.083102-083102
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22482311
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Approximation
BIFURCATION
Bifurcation theory
CHAPMAN-KOLMOGOROV EQUATION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
COMPUTERIZED SIMULATION
Delay
Economic models
FEEDBACK
FOKKER-PLANCK EQUATION
MARKOV PROCESS
Markov processes
NOISE
Noise intensity
OSCILLATORS
PROBABILITY DENSITY FUNCTIONS
Probability theory
Qualitative analysis
RANDOMNESS
TIME DELAY
Time dependence
Time lag
White noise
title Delay-induced stochastic bifurcations in a bistable system under white noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay-induced%20stochastic%20bifurcations%20in%20a%20bistable%20system%20under%20white%20noise&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Sun,%20Zhongkui&rft.date=2015-08-01&rft.volume=25&rft.issue=8&rft.spage=083102&rft.epage=083102&rft.pages=083102-083102&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4927646&rft_dat=%3Cproquest_osti_%3E2124101416%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124101416&rft_id=info:pmid/26328553&rfr_iscdi=true