Low-energy electron holographic imaging of individual tobacco mosaic virions
Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hen...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-09, Vol.107 (13) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 107 |
creator | Longchamp, Jean-Nicolas Latychevskaia, Tatiana Escher, Conrad Fink, Hans-Werner |
description | Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules. |
doi_str_mv | 10.1063/1.4931607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124098425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsHv8GCJw9b8_JnN3uUolVY8KLnkM0m25RtUpNtpd_eSAte3vDgxzAzCN0DXgCu6BMsWEOhwvUFmgGu65ICiEs0wxjTsmo4XKOblDb55YTSGWrb8FMab-JwLMxo9BSDL9ZhDENUu7XThduqwfmhCLZwvncH1-_VWEyhU1qHYhuSytDBRRd8ukVXVo3J3J11jr5eXz6Xb2X7sXpfPrelphym0ja1Er1mPcFVh5ue2a4TlFlrwSjCBVGWC9zQfJnpeitETSjDhlNDgGFL5-jh5BvS5GTSbjJ6rYP3Ob8khAkCNfundjF8702a5Cbso8_BJAHCcCMY4Zl6PFE6hpSisXIXc-d4lIDl36QS5HlS-gtdXGe2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098425</pqid></control><display><type>article</type><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</creator><creatorcontrib>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</creatorcontrib><description>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4931607</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Biology ; Biomolecules ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTALLOGRAPHY ; ELECTRON MICROSCOPY ; ELECTRONS ; FREE ELECTRON LASERS ; GRAPHENE ; HOLOGRAPHY ; NANOSTRUCTURES ; NMR ; NUCLEAR MAGNETIC RESONANCE ; Proteins ; Radiation damage ; RADIATION EFFECTS ; RESOLUTION ; TOBACCO ; Viruses ; WAVELENGTHS ; X RADIATION</subject><ispartof>Applied physics letters, 2015-09, Vol.107 (13)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</citedby><cites>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</cites><orcidid>0000-0001-6693-8681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22482174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Longchamp, Jean-Nicolas</creatorcontrib><creatorcontrib>Latychevskaia, Tatiana</creatorcontrib><creatorcontrib>Escher, Conrad</creatorcontrib><creatorcontrib>Fink, Hans-Werner</creatorcontrib><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><title>Applied physics letters</title><description>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</description><subject>Applied physics</subject><subject>Biology</subject><subject>Biomolecules</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTALLOGRAPHY</subject><subject>ELECTRON MICROSCOPY</subject><subject>ELECTRONS</subject><subject>FREE ELECTRON LASERS</subject><subject>GRAPHENE</subject><subject>HOLOGRAPHY</subject><subject>NANOSTRUCTURES</subject><subject>NMR</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>Proteins</subject><subject>Radiation damage</subject><subject>RADIATION EFFECTS</subject><subject>RESOLUTION</subject><subject>TOBACCO</subject><subject>Viruses</subject><subject>WAVELENGTHS</subject><subject>X RADIATION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsHv8GCJw9b8_JnN3uUolVY8KLnkM0m25RtUpNtpd_eSAte3vDgxzAzCN0DXgCu6BMsWEOhwvUFmgGu65ICiEs0wxjTsmo4XKOblDb55YTSGWrb8FMab-JwLMxo9BSDL9ZhDENUu7XThduqwfmhCLZwvncH1-_VWEyhU1qHYhuSytDBRRd8ukVXVo3J3J11jr5eXz6Xb2X7sXpfPrelphym0ja1Er1mPcFVh5ue2a4TlFlrwSjCBVGWC9zQfJnpeitETSjDhlNDgGFL5-jh5BvS5GTSbjJ6rYP3Ob8khAkCNfundjF8702a5Cbso8_BJAHCcCMY4Zl6PFE6hpSisXIXc-d4lIDl36QS5HlS-gtdXGe2</recordid><startdate>20150928</startdate><enddate>20150928</enddate><creator>Longchamp, Jean-Nicolas</creator><creator>Latychevskaia, Tatiana</creator><creator>Escher, Conrad</creator><creator>Fink, Hans-Werner</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6693-8681</orcidid></search><sort><creationdate>20150928</creationdate><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><author>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Biology</topic><topic>Biomolecules</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTALLOGRAPHY</topic><topic>ELECTRON MICROSCOPY</topic><topic>ELECTRONS</topic><topic>FREE ELECTRON LASERS</topic><topic>GRAPHENE</topic><topic>HOLOGRAPHY</topic><topic>NANOSTRUCTURES</topic><topic>NMR</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>Proteins</topic><topic>Radiation damage</topic><topic>RADIATION EFFECTS</topic><topic>RESOLUTION</topic><topic>TOBACCO</topic><topic>Viruses</topic><topic>WAVELENGTHS</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longchamp, Jean-Nicolas</creatorcontrib><creatorcontrib>Latychevskaia, Tatiana</creatorcontrib><creatorcontrib>Escher, Conrad</creatorcontrib><creatorcontrib>Fink, Hans-Werner</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longchamp, Jean-Nicolas</au><au>Latychevskaia, Tatiana</au><au>Escher, Conrad</au><au>Fink, Hans-Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-energy electron holographic imaging of individual tobacco mosaic virions</atitle><jtitle>Applied physics letters</jtitle><date>2015-09-28</date><risdate>2015</risdate><volume>107</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4931607</doi><orcidid>https://orcid.org/0000-0001-6693-8681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-09, Vol.107 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22482174 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Biology Biomolecules CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CRYSTALLOGRAPHY ELECTRON MICROSCOPY ELECTRONS FREE ELECTRON LASERS GRAPHENE HOLOGRAPHY NANOSTRUCTURES NMR NUCLEAR MAGNETIC RESONANCE Proteins Radiation damage RADIATION EFFECTS RESOLUTION TOBACCO Viruses WAVELENGTHS X RADIATION |
title | Low-energy electron holographic imaging of individual tobacco mosaic virions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-energy%20electron%20holographic%20imaging%20of%20individual%20tobacco%20mosaic%20virions&rft.jtitle=Applied%20physics%20letters&rft.au=Longchamp,%20Jean-Nicolas&rft.date=2015-09-28&rft.volume=107&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4931607&rft_dat=%3Cproquest_osti_%3E2124098425%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124098425&rft_id=info:pmid/&rfr_iscdi=true |