Low-energy electron holographic imaging of individual tobacco mosaic virions

Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-09, Vol.107 (13)
Hauptverfasser: Longchamp, Jean-Nicolas, Latychevskaia, Tatiana, Escher, Conrad, Fink, Hans-Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 107
creator Longchamp, Jean-Nicolas
Latychevskaia, Tatiana
Escher, Conrad
Fink, Hans-Werner
description Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.
doi_str_mv 10.1063/1.4931607
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124098425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsHv8GCJw9b8_JnN3uUolVY8KLnkM0m25RtUpNtpd_eSAte3vDgxzAzCN0DXgCu6BMsWEOhwvUFmgGu65ICiEs0wxjTsmo4XKOblDb55YTSGWrb8FMab-JwLMxo9BSDL9ZhDENUu7XThduqwfmhCLZwvncH1-_VWEyhU1qHYhuSytDBRRd8ukVXVo3J3J11jr5eXz6Xb2X7sXpfPrelphym0ja1Er1mPcFVh5ue2a4TlFlrwSjCBVGWC9zQfJnpeitETSjDhlNDgGFL5-jh5BvS5GTSbjJ6rYP3Ob8khAkCNfundjF8702a5Cbso8_BJAHCcCMY4Zl6PFE6hpSisXIXc-d4lIDl36QS5HlS-gtdXGe2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098425</pqid></control><display><type>article</type><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</creator><creatorcontrib>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</creatorcontrib><description>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4931607</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Biology ; Biomolecules ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTALLOGRAPHY ; ELECTRON MICROSCOPY ; ELECTRONS ; FREE ELECTRON LASERS ; GRAPHENE ; HOLOGRAPHY ; NANOSTRUCTURES ; NMR ; NUCLEAR MAGNETIC RESONANCE ; Proteins ; Radiation damage ; RADIATION EFFECTS ; RESOLUTION ; TOBACCO ; Viruses ; WAVELENGTHS ; X RADIATION</subject><ispartof>Applied physics letters, 2015-09, Vol.107 (13)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</citedby><cites>FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</cites><orcidid>0000-0001-6693-8681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22482174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Longchamp, Jean-Nicolas</creatorcontrib><creatorcontrib>Latychevskaia, Tatiana</creatorcontrib><creatorcontrib>Escher, Conrad</creatorcontrib><creatorcontrib>Fink, Hans-Werner</creatorcontrib><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><title>Applied physics letters</title><description>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</description><subject>Applied physics</subject><subject>Biology</subject><subject>Biomolecules</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTALLOGRAPHY</subject><subject>ELECTRON MICROSCOPY</subject><subject>ELECTRONS</subject><subject>FREE ELECTRON LASERS</subject><subject>GRAPHENE</subject><subject>HOLOGRAPHY</subject><subject>NANOSTRUCTURES</subject><subject>NMR</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>Proteins</subject><subject>Radiation damage</subject><subject>RADIATION EFFECTS</subject><subject>RESOLUTION</subject><subject>TOBACCO</subject><subject>Viruses</subject><subject>WAVELENGTHS</subject><subject>X RADIATION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsHv8GCJw9b8_JnN3uUolVY8KLnkM0m25RtUpNtpd_eSAte3vDgxzAzCN0DXgCu6BMsWEOhwvUFmgGu65ICiEs0wxjTsmo4XKOblDb55YTSGWrb8FMab-JwLMxo9BSDL9ZhDENUu7XThduqwfmhCLZwvncH1-_VWEyhU1qHYhuSytDBRRd8ukVXVo3J3J11jr5eXz6Xb2X7sXpfPrelphym0ja1Er1mPcFVh5ue2a4TlFlrwSjCBVGWC9zQfJnpeitETSjDhlNDgGFL5-jh5BvS5GTSbjJ6rYP3Ob8khAkCNfundjF8702a5Cbso8_BJAHCcCMY4Zl6PFE6hpSisXIXc-d4lIDl36QS5HlS-gtdXGe2</recordid><startdate>20150928</startdate><enddate>20150928</enddate><creator>Longchamp, Jean-Nicolas</creator><creator>Latychevskaia, Tatiana</creator><creator>Escher, Conrad</creator><creator>Fink, Hans-Werner</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6693-8681</orcidid></search><sort><creationdate>20150928</creationdate><title>Low-energy electron holographic imaging of individual tobacco mosaic virions</title><author>Longchamp, Jean-Nicolas ; Latychevskaia, Tatiana ; Escher, Conrad ; Fink, Hans-Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f97a8dc4d206b09d4fbb834fff1ea2582af58093f584ebdf8872340e53e2140f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Biology</topic><topic>Biomolecules</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTALLOGRAPHY</topic><topic>ELECTRON MICROSCOPY</topic><topic>ELECTRONS</topic><topic>FREE ELECTRON LASERS</topic><topic>GRAPHENE</topic><topic>HOLOGRAPHY</topic><topic>NANOSTRUCTURES</topic><topic>NMR</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>Proteins</topic><topic>Radiation damage</topic><topic>RADIATION EFFECTS</topic><topic>RESOLUTION</topic><topic>TOBACCO</topic><topic>Viruses</topic><topic>WAVELENGTHS</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longchamp, Jean-Nicolas</creatorcontrib><creatorcontrib>Latychevskaia, Tatiana</creatorcontrib><creatorcontrib>Escher, Conrad</creatorcontrib><creatorcontrib>Fink, Hans-Werner</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longchamp, Jean-Nicolas</au><au>Latychevskaia, Tatiana</au><au>Escher, Conrad</au><au>Fink, Hans-Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-energy electron holographic imaging of individual tobacco mosaic virions</atitle><jtitle>Applied physics letters</jtitle><date>2015-09-28</date><risdate>2015</risdate><volume>107</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4931607</doi><orcidid>https://orcid.org/0000-0001-6693-8681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-09, Vol.107 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22482174
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Biology
Biomolecules
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CRYSTALLOGRAPHY
ELECTRON MICROSCOPY
ELECTRONS
FREE ELECTRON LASERS
GRAPHENE
HOLOGRAPHY
NANOSTRUCTURES
NMR
NUCLEAR MAGNETIC RESONANCE
Proteins
Radiation damage
RADIATION EFFECTS
RESOLUTION
TOBACCO
Viruses
WAVELENGTHS
X RADIATION
title Low-energy electron holographic imaging of individual tobacco mosaic virions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-energy%20electron%20holographic%20imaging%20of%20individual%20tobacco%20mosaic%20virions&rft.jtitle=Applied%20physics%20letters&rft.au=Longchamp,%20Jean-Nicolas&rft.date=2015-09-28&rft.volume=107&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4931607&rft_dat=%3Cproquest_osti_%3E2124098425%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124098425&rft_id=info:pmid/&rfr_iscdi=true