Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys

Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2015-01, Vol.99, p.277-286
Hauptverfasser: Liu, J.Z., Chen, J.H., Yuan, D.W., Wu, C.L., Zhu, J., Cheng, Z.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 277
container_title Materials characterization
container_volume 99
creator Liu, J.Z.
Chen, J.H.
Yuan, D.W.
Wu, C.L.
Zhu, J.
Cheng, Z.Y.
description Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. •We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys.•We employ aberration-corrected scanning transmission electron microscopy (STEM).•We use aberration-corrected high-resolution TEM (HRTEM) for the investigations.•We obtain atomic-resolution images of the precipitates and model their structures.•We refine all precipitate structures with quantitative image simulation analysis. •The hardening precipitates in AlZnMg alloys shall be classified into two groups.•Two precipitation scenarios coexist in the alloys.•The precipitation behavior of such an alloy depends on the alloy's composition.•Very detailed phase/structure transformations among the precipitates are revealed.
doi_str_mv 10.1016/j.matchar.2014.11.028
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22476025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580314003714</els_id><sourcerecordid>1677990022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-8e5caff9359b5c704fddfa5d03e7b93b4de2e86983096c0ecb61159c232193933</originalsourceid><addsrcrecordid>eNqFUU2L1TAULaLgOPoThICbcdGaj6Zt3MjwmNGBEQV14yakya0vjzapSfqgv80_Z2pnIbhwlUM499xzzymKlwRXBJPmzamaVNJHFSqKSV0RUmHaPSouSNeysiadeJwxruuSd5g9LZ7FeMIYNx1pL4pft9YBmgNoO9ukkvUORQ1OBesj8gO6Hr-7jz-uDstrpMbRrxEFOIMawaB-RcqcldMZq-Qnq8sA0Y_LHxUYQaeQQf4PPmo_ryimxazoswoJ3b1FX1JYdFoCIAMJwmTdvj9vTce_TUFE1v3r5HnxZFBjhBcP72Xx7fbm6-FDef_p_d3h-r7UvG1S2QHXahgE46LnusX1YMyguMEM2l6wvjZAoWtEx7BoNAbdN4RwoSmjRDDB2GXxatf1MVkZtU2gj9o7lw-UlNZtgynPrKudNQf_c4GY5GRzkuOoHPglStK0rRAYU5qpfKduwcQAg5yDnVRYJcFyq1Se5EOlcqtUEiJzpXnu3T4H-dqzhbCZgS1_GzYvxtv_KPwGyHWwsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677990022</pqid></control><display><type>article</type><title>Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, J.Z. ; Chen, J.H. ; Yuan, D.W. ; Wu, C.L. ; Zhu, J. ; Cheng, Z.Y.</creator><creatorcontrib>Liu, J.Z. ; Chen, J.H. ; Yuan, D.W. ; Wu, C.L. ; Zhu, J. ; Cheng, Z.Y.</creatorcontrib><description>Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. •We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys.•We employ aberration-corrected scanning transmission electron microscopy (STEM).•We use aberration-corrected high-resolution TEM (HRTEM) for the investigations.•We obtain atomic-resolution images of the precipitates and model their structures.•We refine all precipitate structures with quantitative image simulation analysis. •The hardening precipitates in AlZnMg alloys shall be classified into two groups.•Two precipitation scenarios coexist in the alloys.•The precipitation behavior of such an alloy depends on the alloy's composition.•Very detailed phase/structure transformations among the precipitates are revealed.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2014.11.028</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aging ; Alloys ; ALUMINIUM COMPOUNDS ; Aluminum alloys ; Al–Zn–Mg–Cu alloys ; Approximation ; APPROXIMATIONS ; CHEMICAL ANALYSIS ; COMPUTER SIMULATION ; COPPER COMPOUNDS ; Electron microscopy ; EQUILIBRIUM ; HARDENING ; MAGNESIUM COMPOUNDS ; MATERIALS SCIENCE ; Microscopes ; Phase transformation ; PHASE TRANSFORMATIONS ; PRECIPITATES ; PRECIPITATION ; QUATERNARY ALLOY SYSTEMS ; RESOLUTION ; SIMULATION ; State of the art ; TRANSFORMATIONS ; TRANSMISSION ELECTRON MICROSCOPY ; ZINC COMPOUNDS</subject><ispartof>Materials characterization, 2015-01, Vol.99, p.277-286</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-8e5caff9359b5c704fddfa5d03e7b93b4de2e86983096c0ecb61159c232193933</citedby><cites>FETCH-LOGICAL-c576t-8e5caff9359b5c704fddfa5d03e7b93b4de2e86983096c0ecb61159c232193933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1044580314003714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22476025$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, J.Z.</creatorcontrib><creatorcontrib>Chen, J.H.</creatorcontrib><creatorcontrib>Yuan, D.W.</creatorcontrib><creatorcontrib>Wu, C.L.</creatorcontrib><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Cheng, Z.Y.</creatorcontrib><title>Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys</title><title>Materials characterization</title><description>Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. •We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys.•We employ aberration-corrected scanning transmission electron microscopy (STEM).•We use aberration-corrected high-resolution TEM (HRTEM) for the investigations.•We obtain atomic-resolution images of the precipitates and model their structures.•We refine all precipitate structures with quantitative image simulation analysis. •The hardening precipitates in AlZnMg alloys shall be classified into two groups.•Two precipitation scenarios coexist in the alloys.•The precipitation behavior of such an alloy depends on the alloy's composition.•Very detailed phase/structure transformations among the precipitates are revealed.</description><subject>Aging</subject><subject>Alloys</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>Aluminum alloys</subject><subject>Al–Zn–Mg–Cu alloys</subject><subject>Approximation</subject><subject>APPROXIMATIONS</subject><subject>CHEMICAL ANALYSIS</subject><subject>COMPUTER SIMULATION</subject><subject>COPPER COMPOUNDS</subject><subject>Electron microscopy</subject><subject>EQUILIBRIUM</subject><subject>HARDENING</subject><subject>MAGNESIUM COMPOUNDS</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopes</subject><subject>Phase transformation</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PRECIPITATES</subject><subject>PRECIPITATION</subject><subject>QUATERNARY ALLOY SYSTEMS</subject><subject>RESOLUTION</subject><subject>SIMULATION</subject><subject>State of the art</subject><subject>TRANSFORMATIONS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>ZINC COMPOUNDS</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU2L1TAULaLgOPoThICbcdGaj6Zt3MjwmNGBEQV14yakya0vjzapSfqgv80_Z2pnIbhwlUM499xzzymKlwRXBJPmzamaVNJHFSqKSV0RUmHaPSouSNeysiadeJwxruuSd5g9LZ7FeMIYNx1pL4pft9YBmgNoO9ukkvUORQ1OBesj8gO6Hr-7jz-uDstrpMbRrxEFOIMawaB-RcqcldMZq-Qnq8sA0Y_LHxUYQaeQQf4PPmo_ryimxazoswoJ3b1FX1JYdFoCIAMJwmTdvj9vTce_TUFE1v3r5HnxZFBjhBcP72Xx7fbm6-FDef_p_d3h-r7UvG1S2QHXahgE46LnusX1YMyguMEM2l6wvjZAoWtEx7BoNAbdN4RwoSmjRDDB2GXxatf1MVkZtU2gj9o7lw-UlNZtgynPrKudNQf_c4GY5GRzkuOoHPglStK0rRAYU5qpfKduwcQAg5yDnVRYJcFyq1Se5EOlcqtUEiJzpXnu3T4H-dqzhbCZgS1_GzYvxtv_KPwGyHWwsw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liu, J.Z.</creator><creator>Chen, J.H.</creator><creator>Yuan, D.W.</creator><creator>Wu, C.L.</creator><creator>Zhu, J.</creator><creator>Cheng, Z.Y.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys</title><author>Liu, J.Z. ; Chen, J.H. ; Yuan, D.W. ; Wu, C.L. ; Zhu, J. ; Cheng, Z.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-8e5caff9359b5c704fddfa5d03e7b93b4de2e86983096c0ecb61159c232193933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>Aluminum alloys</topic><topic>Al–Zn–Mg–Cu alloys</topic><topic>Approximation</topic><topic>APPROXIMATIONS</topic><topic>CHEMICAL ANALYSIS</topic><topic>COMPUTER SIMULATION</topic><topic>COPPER COMPOUNDS</topic><topic>Electron microscopy</topic><topic>EQUILIBRIUM</topic><topic>HARDENING</topic><topic>MAGNESIUM COMPOUNDS</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopes</topic><topic>Phase transformation</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PRECIPITATES</topic><topic>PRECIPITATION</topic><topic>QUATERNARY ALLOY SYSTEMS</topic><topic>RESOLUTION</topic><topic>SIMULATION</topic><topic>State of the art</topic><topic>TRANSFORMATIONS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>ZINC COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.Z.</creatorcontrib><creatorcontrib>Chen, J.H.</creatorcontrib><creatorcontrib>Yuan, D.W.</creatorcontrib><creatorcontrib>Wu, C.L.</creatorcontrib><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Cheng, Z.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.Z.</au><au>Chen, J.H.</au><au>Yuan, D.W.</au><au>Wu, C.L.</au><au>Zhu, J.</au><au>Cheng, Z.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys</atitle><jtitle>Materials characterization</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>99</volume><spage>277</spage><epage>286</epage><pages>277-286</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. •We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys.•We employ aberration-corrected scanning transmission electron microscopy (STEM).•We use aberration-corrected high-resolution TEM (HRTEM) for the investigations.•We obtain atomic-resolution images of the precipitates and model their structures.•We refine all precipitate structures with quantitative image simulation analysis. •The hardening precipitates in AlZnMg alloys shall be classified into two groups.•Two precipitation scenarios coexist in the alloys.•The precipitation behavior of such an alloy depends on the alloy's composition.•Very detailed phase/structure transformations among the precipitates are revealed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2014.11.028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2015-01, Vol.99, p.277-286
issn 1044-5803
1873-4189
language eng
recordid cdi_osti_scitechconnect_22476025
source Elsevier ScienceDirect Journals
subjects Aging
Alloys
ALUMINIUM COMPOUNDS
Aluminum alloys
Al–Zn–Mg–Cu alloys
Approximation
APPROXIMATIONS
CHEMICAL ANALYSIS
COMPUTER SIMULATION
COPPER COMPOUNDS
Electron microscopy
EQUILIBRIUM
HARDENING
MAGNESIUM COMPOUNDS
MATERIALS SCIENCE
Microscopes
Phase transformation
PHASE TRANSFORMATIONS
PRECIPITATES
PRECIPITATION
QUATERNARY ALLOY SYSTEMS
RESOLUTION
SIMULATION
State of the art
TRANSFORMATIONS
TRANSMISSION ELECTRON MICROSCOPY
ZINC COMPOUNDS
title Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20precipitation%20scenarios%20of%20AlZnMg(Cu)%20alloys%20revealed%20by%20advanced%20atomic-resolution%20electron%20microscopy%20study%20Part%20I:%20Structure%20determination%20of%20the%20precipitates%20in%20AlZnMg(Cu)%20alloys&rft.jtitle=Materials%20characterization&rft.au=Liu,%20J.Z.&rft.date=2015-01-01&rft.volume=99&rft.spage=277&rft.epage=286&rft.pages=277-286&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2014.11.028&rft_dat=%3Cproquest_osti_%3E1677990022%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677990022&rft_id=info:pmid/&rft_els_id=S1044580314003714&rfr_iscdi=true