Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research bulletin 2015-10, Vol.70, p.965-975
Hauptverfasser: Ruiyi, Li, Tengyuan, Chen, Beibei, Sun, Zaijun, Li, Zhiquo, Gu, Guangli, Wang, Junkang, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue
container_start_page 965
container_title Materials research bulletin
container_volume 70
creator Ruiyi, Li
Tengyuan, Chen
Beibei, Sun
Zaijun, Li
Zhiquo, Gu
Guangli, Wang
Junkang, Liu
description We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. [Display omitted] •We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks.•One graphene framework greatly improves the electrical conductivity of LTO crystal.•Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport.•The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport.•The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2mAhg−1 and 293.5mAcm−3), outstanding rate capability (155.7mAhg−1 at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles).
doi_str_mv 10.1016/j.materresbull.2015.06.048
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22475980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025540815300192</els_id><sourcerecordid>S0025540815300192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3ecb5ec029ab60cdef7ee1f7840268b6a11a34a9e0c2cc1821307801899449f03</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtVCR2Bb-gwXnhLHz5XBDpaVIFVzgbDnOpPHi2Cvbu9v9JfxdHG1BPfY00sx7b-bNI-Q9g5IBaz9uy0UlDAHjsLe25MCaEtoSavGKbJjoqqLmvLsgGwDeFE0N4g25jHELkCFdtyF_vvsDWmpNms1-ockk5bJi8RDUbkaHdD4NwYxUe5eUccY90HT09P8498e9TuaAdApqwaMPvyOdfPgnWRjv6KBSvvJEj7lH8VGjtegSRYs6Ba9nXIxWlu4wZOainMa35PWkbMR3T_WK_Lq9-Xl9V9z_-Prt-vN9oSvRp6JCPTSogfdqaEGPOHWIbOpEDbwVQ6sYU1WtegTNtWaCswo6AUz0fV33E1RX5MNZ18dkZNQmoZ6zKZcvk5zXXdOLFfXpjNLBxxhwkrtgFhVOkoFcg5Bb-TwIuQYhoZX5y5n85UzG7ONgMKxrMHscTVi3jN68ROYvjOOeLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ruiyi, Li ; Tengyuan, Chen ; Beibei, Sun ; Zaijun, Li ; Zhiquo, Gu ; Guangli, Wang ; Junkang, Liu</creator><creatorcontrib>Ruiyi, Li ; Tengyuan, Chen ; Beibei, Sun ; Zaijun, Li ; Zhiquo, Gu ; Guangli, Wang ; Junkang, Liu</creatorcontrib><description>We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. [Display omitted] •We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks.•One graphene framework greatly improves the electrical conductivity of LTO crystal.•Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport.•The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport.•The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2mAhg−1 and 293.5mAcm−3), outstanding rate capability (155.7mAhg−1 at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles).</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/j.materresbull.2015.06.048</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>AGGLOMERATION ; CAPACITY ; Chemical synthesis ; Composites ; CRYSTALS ; DISTRIBUTION ; ELECTRIC BATTERIES ; ELECTRIC CONDUCTIVITY ; Electrochemical properties ; ELECTROCHEMISTRY ; ELECTRODES ; ELECTROLYTES ; ELECTRON TRANSFER ; ENERGY STORAGE ; GRAPHENE ; LITHIUM IONS ; LITHIUM TITANATES ; MASS ; MICROWAVE RADIATION ; NANOSCIENCE AND NANOTECHNOLOGY ; POROUS MATERIALS ; STABILITY ; SYNTHESIS</subject><ispartof>Materials research bulletin, 2015-10, Vol.70, p.965-975</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3ecb5ec029ab60cdef7ee1f7840268b6a11a34a9e0c2cc1821307801899449f03</citedby><cites>FETCH-LOGICAL-c389t-3ecb5ec029ab60cdef7ee1f7840268b6a11a34a9e0c2cc1821307801899449f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.materresbull.2015.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22475980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiyi, Li</creatorcontrib><creatorcontrib>Tengyuan, Chen</creatorcontrib><creatorcontrib>Beibei, Sun</creatorcontrib><creatorcontrib>Zaijun, Li</creatorcontrib><creatorcontrib>Zhiquo, Gu</creatorcontrib><creatorcontrib>Guangli, Wang</creatorcontrib><creatorcontrib>Junkang, Liu</creatorcontrib><title>Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance</title><title>Materials research bulletin</title><description>We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. [Display omitted] •We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks.•One graphene framework greatly improves the electrical conductivity of LTO crystal.•Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport.•The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport.•The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2mAhg−1 and 293.5mAcm−3), outstanding rate capability (155.7mAhg−1 at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles).</description><subject>AGGLOMERATION</subject><subject>CAPACITY</subject><subject>Chemical synthesis</subject><subject>Composites</subject><subject>CRYSTALS</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC BATTERIES</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electrochemical properties</subject><subject>ELECTROCHEMISTRY</subject><subject>ELECTRODES</subject><subject>ELECTROLYTES</subject><subject>ELECTRON TRANSFER</subject><subject>ENERGY STORAGE</subject><subject>GRAPHENE</subject><subject>LITHIUM IONS</subject><subject>LITHIUM TITANATES</subject><subject>MASS</subject><subject>MICROWAVE RADIATION</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>POROUS MATERIALS</subject><subject>STABILITY</subject><subject>SYNTHESIS</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v1DAQtVCR2Bb-gwXnhLHz5XBDpaVIFVzgbDnOpPHi2Cvbu9v9JfxdHG1BPfY00sx7b-bNI-Q9g5IBaz9uy0UlDAHjsLe25MCaEtoSavGKbJjoqqLmvLsgGwDeFE0N4g25jHELkCFdtyF_vvsDWmpNms1-ockk5bJi8RDUbkaHdD4NwYxUe5eUccY90HT09P8498e9TuaAdApqwaMPvyOdfPgnWRjv6KBSvvJEj7lH8VGjtegSRYs6Ba9nXIxWlu4wZOainMa35PWkbMR3T_WK_Lq9-Xl9V9z_-Prt-vN9oSvRp6JCPTSogfdqaEGPOHWIbOpEDbwVQ6sYU1WtegTNtWaCswo6AUz0fV33E1RX5MNZ18dkZNQmoZ6zKZcvk5zXXdOLFfXpjNLBxxhwkrtgFhVOkoFcg5Bb-TwIuQYhoZX5y5n85UzG7ONgMKxrMHscTVi3jN68ROYvjOOeLg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ruiyi, Li</creator><creator>Tengyuan, Chen</creator><creator>Beibei, Sun</creator><creator>Zaijun, Li</creator><creator>Zhiquo, Gu</creator><creator>Guangli, Wang</creator><creator>Junkang, Liu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20151001</creationdate><title>Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance</title><author>Ruiyi, Li ; Tengyuan, Chen ; Beibei, Sun ; Zaijun, Li ; Zhiquo, Gu ; Guangli, Wang ; Junkang, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3ecb5ec029ab60cdef7ee1f7840268b6a11a34a9e0c2cc1821307801899449f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AGGLOMERATION</topic><topic>CAPACITY</topic><topic>Chemical synthesis</topic><topic>Composites</topic><topic>CRYSTALS</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC BATTERIES</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electrochemical properties</topic><topic>ELECTROCHEMISTRY</topic><topic>ELECTRODES</topic><topic>ELECTROLYTES</topic><topic>ELECTRON TRANSFER</topic><topic>ENERGY STORAGE</topic><topic>GRAPHENE</topic><topic>LITHIUM IONS</topic><topic>LITHIUM TITANATES</topic><topic>MASS</topic><topic>MICROWAVE RADIATION</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>POROUS MATERIALS</topic><topic>STABILITY</topic><topic>SYNTHESIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiyi, Li</creatorcontrib><creatorcontrib>Tengyuan, Chen</creatorcontrib><creatorcontrib>Beibei, Sun</creatorcontrib><creatorcontrib>Zaijun, Li</creatorcontrib><creatorcontrib>Zhiquo, Gu</creatorcontrib><creatorcontrib>Guangli, Wang</creatorcontrib><creatorcontrib>Junkang, Liu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiyi, Li</au><au>Tengyuan, Chen</au><au>Beibei, Sun</au><au>Zaijun, Li</au><au>Zhiquo, Gu</au><au>Guangli, Wang</au><au>Junkang, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance</atitle><jtitle>Materials research bulletin</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>70</volume><spage>965</spage><epage>975</epage><pages>965-975</pages><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. [Display omitted] •We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks.•One graphene framework greatly improves the electrical conductivity of LTO crystal.•Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport.•The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport.•The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2mAhg−1 and 293.5mAcm−3), outstanding rate capability (155.7mAhg−1 at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles).</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.materresbull.2015.06.048</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5408
ispartof Materials research bulletin, 2015-10, Vol.70, p.965-975
issn 0025-5408
1873-4227
language eng
recordid cdi_osti_scitechconnect_22475980
source Access via ScienceDirect (Elsevier)
subjects AGGLOMERATION
CAPACITY
Chemical synthesis
Composites
CRYSTALS
DISTRIBUTION
ELECTRIC BATTERIES
ELECTRIC CONDUCTIVITY
Electrochemical properties
ELECTROCHEMISTRY
ELECTRODES
ELECTROLYTES
ELECTRON TRANSFER
ENERGY STORAGE
GRAPHENE
LITHIUM IONS
LITHIUM TITANATES
MASS
MICROWAVE RADIATION
NANOSCIENCE AND NANOTECHNOLOGY
POROUS MATERIALS
STABILITY
SYNTHESIS
title Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20lithium%20titanate-graphene%20hybrid%20containing%20two%20graphene%20conductive%20frameworks%20for%20lithium-ion%20battery%20with%20excellent%20electrochemical%20performance&rft.jtitle=Materials%20research%20bulletin&rft.au=Ruiyi,%20Li&rft.date=2015-10-01&rft.volume=70&rft.spage=965&rft.epage=975&rft.pages=965-975&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/j.materresbull.2015.06.048&rft_dat=%3Celsevier_osti_%3ES0025540815300192%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0025540815300192&rfr_iscdi=true