Constraint algebra in bigravity

The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2015-07, Vol.78 (5), p.620-623
1. Verfasser: Soloviev, V. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 5
container_start_page 620
container_title Physics of atomic nuclei
container_volume 78
creator Soloviev, V. O.
description The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
doi_str_mv 10.1134/S1063778815050166
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22472177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453291819</galeid><sourcerecordid>A453291819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wJMFTx62ZpLN17EUPwqCYBW8hWyaXVParCSp2H9vSr0UQeYwQ-Z5hvAidAl4DEDr2zlgToWQEhhmGDg_QgNgnFRckffjMpd1tduforOUlhgDSIYH6Grah5Sj8SGPzKpzTTQjH0aN76L58nl7jk5as0ru4rcP0dv93ev0sXp6fphNJ0-VpTXkqtySqgWFKW6wEIpSIevGNBiwI5JLSowidYsVZ0Sp1i5qxwwVlvEyK7OgQ3S9v9un7HWyPjv7YfsQnM2akFoQEKJQ4z3VmZXTPrR9-bottXBrX2jX-vI-qRklCiSoItwcCIXJ7jt3ZpOSns1fDlnYszb2KUXX6s_o1yZuNWC9C1n_Cbk4ZO-kwobORb3sNzGUpP6RfgDGNXn8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraint algebra in bigravity</title><source>Springer Nature - Complete Springer Journals</source><creator>Soloviev, V. O.</creator><creatorcontrib>Soloviev, V. O.</creatorcontrib><description>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778815050166</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ALGEBRA ; DEGREES OF FREEDOM ; Elementary Particles and Fields ; HAMILTONIANS ; LIMITING VALUES ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; POTENTIALS</subject><ispartof>Physics of atomic nuclei, 2015-07, Vol.78 (5), p.620-623</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778815050166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778815050166$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22472177$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviev, V. O.</creatorcontrib><title>Constraint algebra in bigravity</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</description><subject>ALGEBRA</subject><subject>DEGREES OF FREEDOM</subject><subject>Elementary Particles and Fields</subject><subject>HAMILTONIANS</subject><subject>LIMITING VALUES</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POTENTIALS</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wJMFTx62ZpLN17EUPwqCYBW8hWyaXVParCSp2H9vSr0UQeYwQ-Z5hvAidAl4DEDr2zlgToWQEhhmGDg_QgNgnFRckffjMpd1tduforOUlhgDSIYH6Grah5Sj8SGPzKpzTTQjH0aN76L58nl7jk5as0ru4rcP0dv93ev0sXp6fphNJ0-VpTXkqtySqgWFKW6wEIpSIevGNBiwI5JLSowidYsVZ0Sp1i5qxwwVlvEyK7OgQ3S9v9un7HWyPjv7YfsQnM2akFoQEKJQ4z3VmZXTPrR9-bottXBrX2jX-vI-qRklCiSoItwcCIXJ7jt3ZpOSns1fDlnYszb2KUXX6s_o1yZuNWC9C1n_Cbk4ZO-kwobORb3sNzGUpP6RfgDGNXn8</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Soloviev, V. O.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20150701</creationdate><title>Constraint algebra in bigravity</title><author>Soloviev, V. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALGEBRA</topic><topic>DEGREES OF FREEDOM</topic><topic>Elementary Particles and Fields</topic><topic>HAMILTONIANS</topic><topic>LIMITING VALUES</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POTENTIALS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, V. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, V. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint algebra in bigravity</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>78</volume><issue>5</issue><spage>620</spage><epage>623</epage><pages>620-623</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778815050166</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2015-07, Vol.78 (5), p.620-623
issn 1063-7788
1562-692X
language eng
recordid cdi_osti_scitechconnect_22472177
source Springer Nature - Complete Springer Journals
subjects ALGEBRA
DEGREES OF FREEDOM
Elementary Particles and Fields
HAMILTONIANS
LIMITING VALUES
NUCLEAR PHYSICS AND RADIATION PHYSICS
Particle and Nuclear Physics
Physics
Physics and Astronomy
POTENTIALS
title Constraint algebra in bigravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20algebra%20in%20bigravity&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Soloviev,%20V.%20O.&rft.date=2015-07-01&rft.volume=78&rft.issue=5&rft.spage=620&rft.epage=623&rft.pages=620-623&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778815050166&rft_dat=%3Cgale_osti_%3EA453291819%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A453291819&rfr_iscdi=true