Constraint algebra in bigravity
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2015-07, Vol.78 (5), p.620-623 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | 5 |
container_start_page | 620 |
container_title | Physics of atomic nuclei |
container_volume | 78 |
creator | Soloviev, V. O. |
description | The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study. |
doi_str_mv | 10.1134/S1063778815050166 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22472177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453291819</galeid><sourcerecordid>A453291819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wJMFTx62ZpLN17EUPwqCYBW8hWyaXVParCSp2H9vSr0UQeYwQ-Z5hvAidAl4DEDr2zlgToWQEhhmGDg_QgNgnFRckffjMpd1tduforOUlhgDSIYH6Grah5Sj8SGPzKpzTTQjH0aN76L58nl7jk5as0ru4rcP0dv93ev0sXp6fphNJ0-VpTXkqtySqgWFKW6wEIpSIevGNBiwI5JLSowidYsVZ0Sp1i5qxwwVlvEyK7OgQ3S9v9un7HWyPjv7YfsQnM2akFoQEKJQ4z3VmZXTPrR9-bottXBrX2jX-vI-qRklCiSoItwcCIXJ7jt3ZpOSns1fDlnYszb2KUXX6s_o1yZuNWC9C1n_Cbk4ZO-kwobORb3sNzGUpP6RfgDGNXn8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraint algebra in bigravity</title><source>Springer Nature - Complete Springer Journals</source><creator>Soloviev, V. O.</creator><creatorcontrib>Soloviev, V. O.</creatorcontrib><description>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778815050166</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ALGEBRA ; DEGREES OF FREEDOM ; Elementary Particles and Fields ; HAMILTONIANS ; LIMITING VALUES ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; POTENTIALS</subject><ispartof>Physics of atomic nuclei, 2015-07, Vol.78 (5), p.620-623</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778815050166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778815050166$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22472177$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviev, V. O.</creatorcontrib><title>Constraint algebra in bigravity</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</description><subject>ALGEBRA</subject><subject>DEGREES OF FREEDOM</subject><subject>Elementary Particles and Fields</subject><subject>HAMILTONIANS</subject><subject>LIMITING VALUES</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POTENTIALS</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wJMFTx62ZpLN17EUPwqCYBW8hWyaXVParCSp2H9vSr0UQeYwQ-Z5hvAidAl4DEDr2zlgToWQEhhmGDg_QgNgnFRckffjMpd1tduforOUlhgDSIYH6Grah5Sj8SGPzKpzTTQjH0aN76L58nl7jk5as0ru4rcP0dv93ev0sXp6fphNJ0-VpTXkqtySqgWFKW6wEIpSIevGNBiwI5JLSowidYsVZ0Sp1i5qxwwVlvEyK7OgQ3S9v9un7HWyPjv7YfsQnM2akFoQEKJQ4z3VmZXTPrR9-bottXBrX2jX-vI-qRklCiSoItwcCIXJ7jt3ZpOSns1fDlnYszb2KUXX6s_o1yZuNWC9C1n_Cbk4ZO-kwobORb3sNzGUpP6RfgDGNXn8</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Soloviev, V. O.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20150701</creationdate><title>Constraint algebra in bigravity</title><author>Soloviev, V. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-85089f19030b077933784bab010e286832a924f0965299fcd4e5a37c56fcd9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALGEBRA</topic><topic>DEGREES OF FREEDOM</topic><topic>Elementary Particles and Fields</topic><topic>HAMILTONIANS</topic><topic>LIMITING VALUES</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POTENTIALS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, V. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, V. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint algebra in bigravity</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>78</volume><issue>5</issue><spage>620</spage><epage>623</epage><pages>620-623</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778815050166</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2015-07, Vol.78 (5), p.620-623 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_osti_scitechconnect_22472177 |
source | Springer Nature - Complete Springer Journals |
subjects | ALGEBRA DEGREES OF FREEDOM Elementary Particles and Fields HAMILTONIANS LIMITING VALUES NUCLEAR PHYSICS AND RADIATION PHYSICS Particle and Nuclear Physics Physics Physics and Astronomy POTENTIALS |
title | Constraint algebra in bigravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20algebra%20in%20bigravity&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Soloviev,%20V.%20O.&rft.date=2015-07-01&rft.volume=78&rft.issue=5&rft.spage=620&rft.epage=623&rft.pages=620-623&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778815050166&rft_dat=%3Cgale_osti_%3EA453291819%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A453291819&rfr_iscdi=true |