Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping
The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2015-03, Vol.49 (3), p.331-336 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 3 |
container_start_page | 331 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 49 |
creator | Sorokin, S. V. Gronin, S. V. Sedova, I. V. Rakhlin, M. V. Baidakova, M. V. Kop’ev, P. S. Vainilovich, A. G. Lutsenko, E. V. Yablonskii, G. P. Gamov, N. A. Zhdanova, E. V. Zverev, M. M. Ruvimov, S. S. Ivanov, S. V. |
description | The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as
P
thr
∼ 0.8 kW/cm
2
at
T
= 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs. |
doi_str_mv | 10.1134/S1063782615030215 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22470050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063782615030215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b3c8e8b9eb831273e3d420c5e042096656b7a367f1743bf732e60d18d6a9d1f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8R5OmTdujLH4UVjy4eC1pMt12aZuSpKzeBH-C_9BfYsp6Ezy9Yea9mXkPoUtGrxnj8c0Lo4KnWSRYQjmNWHKEFozmlIg4zY_nWnAyz0_RmXM7ShnLkniBPp9MB2rqpCUVyB7D2Hr59o5NjRvwYI3zdlJ-suDm3r7VQLZyxEXx_fH1WmBl-tFMg3a4NhZ3Zk98E7iN6TTupAPrgsY32Iy-VbLDctAYwkVvzYDHqR_bYXuOTmrZObj4xSXa3N9tVo9k_fxQrG7XRHEmPKm4yiCrcqgyzqKUA9dxRFUCNEAuRCKqVHKR1iyNeVWnPAJBNcu0kLlmNV-iq8Pa4KktnWo9qEaZYQjflFEUp5SG7JaIHVgqeHcW6nK0bS_te8loOUdd_ok6aKKDxgXusAVb7sxkh-DlH9EPUe2C1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sorokin, S. V. ; Gronin, S. V. ; Sedova, I. V. ; Rakhlin, M. V. ; Baidakova, M. V. ; Kop’ev, P. S. ; Vainilovich, A. G. ; Lutsenko, E. V. ; Yablonskii, G. P. ; Gamov, N. A. ; Zhdanova, E. V. ; Zverev, M. M. ; Ruvimov, S. S. ; Ivanov, S. V.</creator><creatorcontrib>Sorokin, S. V. ; Gronin, S. V. ; Sedova, I. V. ; Rakhlin, M. V. ; Baidakova, M. V. ; Kop’ev, P. S. ; Vainilovich, A. G. ; Lutsenko, E. V. ; Yablonskii, G. P. ; Gamov, N. A. ; Zhdanova, E. V. ; Zverev, M. M. ; Ruvimov, S. S. ; Ivanov, S. V.</creatorcontrib><description>The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as
P
thr
∼ 0.8 kW/cm
2
at
T
= 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782615030215</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CADMIUM SELENIDES ; ELECTRONS ; HETEROJUNCTIONS ; Interfaces ; MAGNESIUM SULFIDES ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; MOLECULAR BEAM EPITAXY ; NANOSCIENCE AND NANOTECHNOLOGY ; Physics ; Physics and Astronomy ; POINT DEFECTS ; POWER DENSITY ; QUANTUM DOTS ; QUANTUM WELLS ; STRAINS ; SUPERLATTICES ; Surfaces ; Thin Films ; ZINC SELENIDES</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2015-03, Vol.49 (3), p.331-336</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b3c8e8b9eb831273e3d420c5e042096656b7a367f1743bf732e60d18d6a9d1f3</citedby><cites>FETCH-LOGICAL-c316t-b3c8e8b9eb831273e3d420c5e042096656b7a367f1743bf732e60d18d6a9d1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782615030215$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782615030215$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22470050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorokin, S. V.</creatorcontrib><creatorcontrib>Gronin, S. V.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><creatorcontrib>Rakhlin, M. V.</creatorcontrib><creatorcontrib>Baidakova, M. V.</creatorcontrib><creatorcontrib>Kop’ev, P. S.</creatorcontrib><creatorcontrib>Vainilovich, A. G.</creatorcontrib><creatorcontrib>Lutsenko, E. V.</creatorcontrib><creatorcontrib>Yablonskii, G. P.</creatorcontrib><creatorcontrib>Gamov, N. A.</creatorcontrib><creatorcontrib>Zhdanova, E. V.</creatorcontrib><creatorcontrib>Zverev, M. M.</creatorcontrib><creatorcontrib>Ruvimov, S. S.</creatorcontrib><creatorcontrib>Ivanov, S. V.</creatorcontrib><title>Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as
P
thr
∼ 0.8 kW/cm
2
at
T
= 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.</description><subject>CADMIUM SELENIDES</subject><subject>ELECTRONS</subject><subject>HETEROJUNCTIONS</subject><subject>Interfaces</subject><subject>MAGNESIUM SULFIDES</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POINT DEFECTS</subject><subject>POWER DENSITY</subject><subject>QUANTUM DOTS</subject><subject>QUANTUM WELLS</subject><subject>STRAINS</subject><subject>SUPERLATTICES</subject><subject>Surfaces</subject><subject>Thin Films</subject><subject>ZINC SELENIDES</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8R5OmTdujLH4UVjy4eC1pMt12aZuSpKzeBH-C_9BfYsp6Ezy9Yea9mXkPoUtGrxnj8c0Lo4KnWSRYQjmNWHKEFozmlIg4zY_nWnAyz0_RmXM7ShnLkniBPp9MB2rqpCUVyB7D2Hr59o5NjRvwYI3zdlJ-suDm3r7VQLZyxEXx_fH1WmBl-tFMg3a4NhZ3Zk98E7iN6TTupAPrgsY32Iy-VbLDctAYwkVvzYDHqR_bYXuOTmrZObj4xSXa3N9tVo9k_fxQrG7XRHEmPKm4yiCrcqgyzqKUA9dxRFUCNEAuRCKqVHKR1iyNeVWnPAJBNcu0kLlmNV-iq8Pa4KktnWo9qEaZYQjflFEUp5SG7JaIHVgqeHcW6nK0bS_te8loOUdd_ok6aKKDxgXusAVb7sxkh-DlH9EPUe2C1w</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Sorokin, S. V.</creator><creator>Gronin, S. V.</creator><creator>Sedova, I. V.</creator><creator>Rakhlin, M. V.</creator><creator>Baidakova, M. V.</creator><creator>Kop’ev, P. S.</creator><creator>Vainilovich, A. G.</creator><creator>Lutsenko, E. V.</creator><creator>Yablonskii, G. P.</creator><creator>Gamov, N. A.</creator><creator>Zhdanova, E. V.</creator><creator>Zverev, M. M.</creator><creator>Ruvimov, S. S.</creator><creator>Ivanov, S. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150301</creationdate><title>Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping</title><author>Sorokin, S. V. ; Gronin, S. V. ; Sedova, I. V. ; Rakhlin, M. V. ; Baidakova, M. V. ; Kop’ev, P. S. ; Vainilovich, A. G. ; Lutsenko, E. V. ; Yablonskii, G. P. ; Gamov, N. A. ; Zhdanova, E. V. ; Zverev, M. M. ; Ruvimov, S. S. ; Ivanov, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b3c8e8b9eb831273e3d420c5e042096656b7a367f1743bf732e60d18d6a9d1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CADMIUM SELENIDES</topic><topic>ELECTRONS</topic><topic>HETEROJUNCTIONS</topic><topic>Interfaces</topic><topic>MAGNESIUM SULFIDES</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POINT DEFECTS</topic><topic>POWER DENSITY</topic><topic>QUANTUM DOTS</topic><topic>QUANTUM WELLS</topic><topic>STRAINS</topic><topic>SUPERLATTICES</topic><topic>Surfaces</topic><topic>Thin Films</topic><topic>ZINC SELENIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorokin, S. V.</creatorcontrib><creatorcontrib>Gronin, S. V.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><creatorcontrib>Rakhlin, M. V.</creatorcontrib><creatorcontrib>Baidakova, M. V.</creatorcontrib><creatorcontrib>Kop’ev, P. S.</creatorcontrib><creatorcontrib>Vainilovich, A. G.</creatorcontrib><creatorcontrib>Lutsenko, E. V.</creatorcontrib><creatorcontrib>Yablonskii, G. P.</creatorcontrib><creatorcontrib>Gamov, N. A.</creatorcontrib><creatorcontrib>Zhdanova, E. V.</creatorcontrib><creatorcontrib>Zverev, M. M.</creatorcontrib><creatorcontrib>Ruvimov, S. S.</creatorcontrib><creatorcontrib>Ivanov, S. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorokin, S. V.</au><au>Gronin, S. V.</au><au>Sedova, I. V.</au><au>Rakhlin, M. V.</au><au>Baidakova, M. V.</au><au>Kop’ev, P. S.</au><au>Vainilovich, A. G.</au><au>Lutsenko, E. V.</au><au>Yablonskii, G. P.</au><au>Gamov, N. A.</au><au>Zhdanova, E. V.</au><au>Zverev, M. M.</au><au>Ruvimov, S. S.</au><au>Ivanov, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>49</volume><issue>3</issue><spage>331</spage><epage>336</epage><pages>331-336</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as
P
thr
∼ 0.8 kW/cm
2
at
T
= 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782615030215</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2015-03, Vol.49 (3), p.331-336 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22470050 |
source | SpringerLink Journals - AutoHoldings |
subjects | CADMIUM SELENIDES ELECTRONS HETEROJUNCTIONS Interfaces MAGNESIUM SULFIDES Magnetic Materials Magnetism MATERIALS SCIENCE MOLECULAR BEAM EPITAXY NANOSCIENCE AND NANOTECHNOLOGY Physics Physics and Astronomy POINT DEFECTS POWER DENSITY QUANTUM DOTS QUANTUM WELLS STRAINS SUPERLATTICES Surfaces Thin Films ZINC SELENIDES |
title | Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-beam%20epitaxy%20of%20heterostructures%20of%20wide-gap%20II%E2%80%93VI%20compounds%20for%20low-threshold%20lasers%20with%20optical%20and%20electron%20pumping&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Sorokin,%20S.%20V.&rft.date=2015-03-01&rft.volume=49&rft.issue=3&rft.spage=331&rft.epage=336&rft.pages=331-336&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782615030215&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063782615030215%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |