Stochastic Discrete Equation Method (sDEM) for two-phase flows

A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-10, Vol.299, p.281-306
Hauptverfasser: Abgrall, R., Congedo, P.M., Geraci, G., Rodio, M.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 281
container_title Journal of computational physics
container_volume 299
creator Abgrall, R.
Congedo, P.M.
Geraci, G.
Rodio, M.G.
description A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.
doi_str_mv 10.1016/j.jcp.2015.06.013
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22465670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911500399X</els_id><sourcerecordid>1786207955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN2AG13M-JJpMhMEQWz9AIsLdR3SN2_olDqpSWrx35syrl29zbmPew9j5xwKDlxdr4oVbgoBXBagCuDlARtx0JCLiqtDNgIQPNda82N2EsIKAGo5qUfs9i06XNoQO8ymXUBPkbLZ19bGzvXZnOLSNdllmM7mV1nrfBZ3Lt8knrJ27XbhlB21dh3o7O-O2cfD7P3-KX95fXy-v3vJsZR1zGvSTakkaqFJljixqGxTLxaAk1JDZaVcCA4oWluCVqR4RYIqBIG6qrmqyzG7GP661NQE7CLhEl3fE0YjxERJVUGiLgdq493XlkI0n2kSrde2J7cNhle1ElBpKRPKBxS9C8FTaza--7T-x3Awe6NmZZJRszdqQJlkNGVuhgylpd8d-X0R6pGazu97NK77J_0LX3571Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786207955</pqid></control><display><type>article</type><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</creator><creatorcontrib>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</creatorcontrib><description>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.06.013</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive Semi-Intrusive scheme (aSI) ; Approximation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPRESSIBLE FLOW ; Computational efficiency ; CONDENSATION PARTICLE COUNTERS ; CONVERGENCE ; Discrete Equation Method (DEM) ; Discretization ; EFFICIENCY ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematical models ; Multiresolution (MR) ; STOCHASTIC PROCESSES ; Stochasticity ; THERMODYNAMIC PROPERTIES ; Two-phase compressible flows ; TWO-PHASE FLOW ; Uncertainty ; Uncertainty Quantification (UQ)</subject><ispartof>Journal of computational physics, 2015-10, Vol.299, p.281-306</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</citedby><cites>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.06.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22465670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abgrall, R.</creatorcontrib><creatorcontrib>Congedo, P.M.</creatorcontrib><creatorcontrib>Geraci, G.</creatorcontrib><creatorcontrib>Rodio, M.G.</creatorcontrib><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><title>Journal of computational physics</title><description>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</description><subject>Adaptive Semi-Intrusive scheme (aSI)</subject><subject>Approximation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPRESSIBLE FLOW</subject><subject>Computational efficiency</subject><subject>CONDENSATION PARTICLE COUNTERS</subject><subject>CONVERGENCE</subject><subject>Discrete Equation Method (DEM)</subject><subject>Discretization</subject><subject>EFFICIENCY</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematical models</subject><subject>Multiresolution (MR)</subject><subject>STOCHASTIC PROCESSES</subject><subject>Stochasticity</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>Two-phase compressible flows</subject><subject>TWO-PHASE FLOW</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification (UQ)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN2AG13M-JJpMhMEQWz9AIsLdR3SN2_olDqpSWrx35syrl29zbmPew9j5xwKDlxdr4oVbgoBXBagCuDlARtx0JCLiqtDNgIQPNda82N2EsIKAGo5qUfs9i06XNoQO8ymXUBPkbLZ19bGzvXZnOLSNdllmM7mV1nrfBZ3Lt8knrJ27XbhlB21dh3o7O-O2cfD7P3-KX95fXy-v3vJsZR1zGvSTakkaqFJljixqGxTLxaAk1JDZaVcCA4oWluCVqR4RYIqBIG6qrmqyzG7GP661NQE7CLhEl3fE0YjxERJVUGiLgdq493XlkI0n2kSrde2J7cNhle1ElBpKRPKBxS9C8FTaza--7T-x3Awe6NmZZJRszdqQJlkNGVuhgylpd8d-X0R6pGazu97NK77J_0LX3571Q</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Abgrall, R.</creator><creator>Congedo, P.M.</creator><creator>Geraci, G.</creator><creator>Rodio, M.G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20151015</creationdate><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><author>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive Semi-Intrusive scheme (aSI)</topic><topic>Approximation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPRESSIBLE FLOW</topic><topic>Computational efficiency</topic><topic>CONDENSATION PARTICLE COUNTERS</topic><topic>CONVERGENCE</topic><topic>Discrete Equation Method (DEM)</topic><topic>Discretization</topic><topic>EFFICIENCY</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematical models</topic><topic>Multiresolution (MR)</topic><topic>STOCHASTIC PROCESSES</topic><topic>Stochasticity</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>Two-phase compressible flows</topic><topic>TWO-PHASE FLOW</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification (UQ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abgrall, R.</creatorcontrib><creatorcontrib>Congedo, P.M.</creatorcontrib><creatorcontrib>Geraci, G.</creatorcontrib><creatorcontrib>Rodio, M.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abgrall, R.</au><au>Congedo, P.M.</au><au>Geraci, G.</au><au>Rodio, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Discrete Equation Method (sDEM) for two-phase flows</atitle><jtitle>Journal of computational physics</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>299</volume><spage>281</spage><epage>306</epage><pages>281-306</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.06.013</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-10, Vol.299, p.281-306
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22465670
source Access via ScienceDirect (Elsevier)
subjects Adaptive Semi-Intrusive scheme (aSI)
Approximation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPRESSIBLE FLOW
Computational efficiency
CONDENSATION PARTICLE COUNTERS
CONVERGENCE
Discrete Equation Method (DEM)
Discretization
EFFICIENCY
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Mathematical models
Multiresolution (MR)
STOCHASTIC PROCESSES
Stochasticity
THERMODYNAMIC PROPERTIES
Two-phase compressible flows
TWO-PHASE FLOW
Uncertainty
Uncertainty Quantification (UQ)
title Stochastic Discrete Equation Method (sDEM) for two-phase flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Discrete%20Equation%20Method%20(sDEM)%20for%20two-phase%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Abgrall,%20R.&rft.date=2015-10-15&rft.volume=299&rft.spage=281&rft.epage=306&rft.pages=281-306&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.06.013&rft_dat=%3Cproquest_osti_%3E1786207955%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786207955&rft_id=info:pmid/&rft_els_id=S002199911500399X&rfr_iscdi=true