Stochastic Discrete Equation Method (sDEM) for two-phase flows
A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Se...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2015-10, Vol.299, p.281-306 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Journal of computational physics |
container_volume | 299 |
creator | Abgrall, R. Congedo, P.M. Geraci, G. Rodio, M.G. |
description | A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases. |
doi_str_mv | 10.1016/j.jcp.2015.06.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22465670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911500399X</els_id><sourcerecordid>1786207955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN2AG13M-JJpMhMEQWz9AIsLdR3SN2_olDqpSWrx35syrl29zbmPew9j5xwKDlxdr4oVbgoBXBagCuDlARtx0JCLiqtDNgIQPNda82N2EsIKAGo5qUfs9i06XNoQO8ymXUBPkbLZ19bGzvXZnOLSNdllmM7mV1nrfBZ3Lt8knrJ27XbhlB21dh3o7O-O2cfD7P3-KX95fXy-v3vJsZR1zGvSTakkaqFJljixqGxTLxaAk1JDZaVcCA4oWluCVqR4RYIqBIG6qrmqyzG7GP661NQE7CLhEl3fE0YjxERJVUGiLgdq493XlkI0n2kSrde2J7cNhle1ElBpKRPKBxS9C8FTaza--7T-x3Awe6NmZZJRszdqQJlkNGVuhgylpd8d-X0R6pGazu97NK77J_0LX3571Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786207955</pqid></control><display><type>article</type><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</creator><creatorcontrib>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</creatorcontrib><description>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.06.013</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive Semi-Intrusive scheme (aSI) ; Approximation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPRESSIBLE FLOW ; Computational efficiency ; CONDENSATION PARTICLE COUNTERS ; CONVERGENCE ; Discrete Equation Method (DEM) ; Discretization ; EFFICIENCY ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematical models ; Multiresolution (MR) ; STOCHASTIC PROCESSES ; Stochasticity ; THERMODYNAMIC PROPERTIES ; Two-phase compressible flows ; TWO-PHASE FLOW ; Uncertainty ; Uncertainty Quantification (UQ)</subject><ispartof>Journal of computational physics, 2015-10, Vol.299, p.281-306</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</citedby><cites>FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.06.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22465670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abgrall, R.</creatorcontrib><creatorcontrib>Congedo, P.M.</creatorcontrib><creatorcontrib>Geraci, G.</creatorcontrib><creatorcontrib>Rodio, M.G.</creatorcontrib><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><title>Journal of computational physics</title><description>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</description><subject>Adaptive Semi-Intrusive scheme (aSI)</subject><subject>Approximation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPRESSIBLE FLOW</subject><subject>Computational efficiency</subject><subject>CONDENSATION PARTICLE COUNTERS</subject><subject>CONVERGENCE</subject><subject>Discrete Equation Method (DEM)</subject><subject>Discretization</subject><subject>EFFICIENCY</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematical models</subject><subject>Multiresolution (MR)</subject><subject>STOCHASTIC PROCESSES</subject><subject>Stochasticity</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>Two-phase compressible flows</subject><subject>TWO-PHASE FLOW</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification (UQ)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN2AG13M-JJpMhMEQWz9AIsLdR3SN2_olDqpSWrx35syrl29zbmPew9j5xwKDlxdr4oVbgoBXBagCuDlARtx0JCLiqtDNgIQPNda82N2EsIKAGo5qUfs9i06XNoQO8ymXUBPkbLZ19bGzvXZnOLSNdllmM7mV1nrfBZ3Lt8knrJ27XbhlB21dh3o7O-O2cfD7P3-KX95fXy-v3vJsZR1zGvSTakkaqFJljixqGxTLxaAk1JDZaVcCA4oWluCVqR4RYIqBIG6qrmqyzG7GP661NQE7CLhEl3fE0YjxERJVUGiLgdq493XlkI0n2kSrde2J7cNhle1ElBpKRPKBxS9C8FTaza--7T-x3Awe6NmZZJRszdqQJlkNGVuhgylpd8d-X0R6pGazu97NK77J_0LX3571Q</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Abgrall, R.</creator><creator>Congedo, P.M.</creator><creator>Geraci, G.</creator><creator>Rodio, M.G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20151015</creationdate><title>Stochastic Discrete Equation Method (sDEM) for two-phase flows</title><author>Abgrall, R. ; Congedo, P.M. ; Geraci, G. ; Rodio, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8e9d365c929e53c4ac6ad8bb0c43907a55b210c2fa3096e617e2e7c02c9781683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive Semi-Intrusive scheme (aSI)</topic><topic>Approximation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPRESSIBLE FLOW</topic><topic>Computational efficiency</topic><topic>CONDENSATION PARTICLE COUNTERS</topic><topic>CONVERGENCE</topic><topic>Discrete Equation Method (DEM)</topic><topic>Discretization</topic><topic>EFFICIENCY</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematical models</topic><topic>Multiresolution (MR)</topic><topic>STOCHASTIC PROCESSES</topic><topic>Stochasticity</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>Two-phase compressible flows</topic><topic>TWO-PHASE FLOW</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification (UQ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abgrall, R.</creatorcontrib><creatorcontrib>Congedo, P.M.</creatorcontrib><creatorcontrib>Geraci, G.</creatorcontrib><creatorcontrib>Rodio, M.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abgrall, R.</au><au>Congedo, P.M.</au><au>Geraci, G.</au><au>Rodio, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Discrete Equation Method (sDEM) for two-phase flows</atitle><jtitle>Journal of computational physics</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>299</volume><spage>281</spage><epage>306</epage><pages>281-306</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.06.013</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2015-10, Vol.299, p.281-306 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_22465670 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adaptive Semi-Intrusive scheme (aSI) Approximation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPRESSIBLE FLOW Computational efficiency CONDENSATION PARTICLE COUNTERS CONVERGENCE Discrete Equation Method (DEM) Discretization EFFICIENCY Mathematical analysis MATHEMATICAL METHODS AND COMPUTING Mathematical models Multiresolution (MR) STOCHASTIC PROCESSES Stochasticity THERMODYNAMIC PROPERTIES Two-phase compressible flows TWO-PHASE FLOW Uncertainty Uncertainty Quantification (UQ) |
title | Stochastic Discrete Equation Method (sDEM) for two-phase flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Discrete%20Equation%20Method%20(sDEM)%20for%20two-phase%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Abgrall,%20R.&rft.date=2015-10-15&rft.volume=299&rft.spage=281&rft.epage=306&rft.pages=281-306&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.06.013&rft_dat=%3Cproquest_osti_%3E1786207955%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786207955&rft_id=info:pmid/&rft_els_id=S002199911500399X&rfr_iscdi=true |