A finite-time exponent for random Ehrenfest gas
We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2015-10, Vol.361, p.82-90 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 82 |
container_title | Annals of physics |
container_volume | 361 |
creator | Moudgalya, Sanjay Chandra, Sarthak Jain, Sudhir R. |
description | We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit.
•We present a finite-time exponent for particles moving in a plane containing polygonal scatterers.•The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle.•Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule.•Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing. |
doi_str_mv | 10.1016/j.aop.2015.05.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22451232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491615002419</els_id><sourcerecordid>3788009141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6f7166fdcd742000c44e23d2754bd674c06df386b40bd03470f51f7243f8623</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2A65nePCZpcVVKfUDBhS7chWkeNoNNxiQV_fdmqAtXwoG7Oefe7x6ErjE0GDCf9U0XhoYAbhsoovQETTAseA20fT1FEwCgNVtgfo4uUuoBMGbtfIJmy8o677Kps9ubynwNwRufKxtiFTuvw75a76Lx1qRcvXXpEp3Z7j2Zq985Rc9365fVQ715un9cLTe1oguea24F5txqpQUj5bZizBCqiWjZVnPBFHBt6ZxvGWw1UCbAttgKwqidc0Kn6Oa4NaTsZFKFT-1U8N6oLAlhLSb0j2uI4eNQAGUfDtEXLIkFCCiXKS4ufHSpGFKKxsohun0XvyUGOXYne1m6k2N3EoooLZnbY8aUFz-diSOD8cpoF0cEHdw_6R_MFnO3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707042031</pqid></control><display><type>article</type><title>A finite-time exponent for random Ehrenfest gas</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Moudgalya, Sanjay ; Chandra, Sarthak ; Jain, Sudhir R.</creator><creatorcontrib>Moudgalya, Sanjay ; Chandra, Sarthak ; Jain, Sudhir R.</creatorcontrib><description>We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit.
•We present a finite-time exponent for particles moving in a plane containing polygonal scatterers.•The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle.•Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule.•Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2015.05.033</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Chaos ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Ehrenfest gas ; Gases ; LORENTZ GAS ; Lyapunov exponent ; LYAPUNOV METHOD ; Physics ; RANDOMNESS ; Weak mixing</subject><ispartof>Annals of physics, 2015-10, Vol.361, p.82-90</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-6f7166fdcd742000c44e23d2754bd674c06df386b40bd03470f51f7243f8623</citedby><cites>FETCH-LOGICAL-c396t-6f7166fdcd742000c44e23d2754bd674c06df386b40bd03470f51f7243f8623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2015.05.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22451232$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moudgalya, Sanjay</creatorcontrib><creatorcontrib>Chandra, Sarthak</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><title>A finite-time exponent for random Ehrenfest gas</title><title>Annals of physics</title><description>We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit.
•We present a finite-time exponent for particles moving in a plane containing polygonal scatterers.•The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle.•Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule.•Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.</description><subject>Chaos</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Ehrenfest gas</subject><subject>Gases</subject><subject>LORENTZ GAS</subject><subject>Lyapunov exponent</subject><subject>LYAPUNOV METHOD</subject><subject>Physics</subject><subject>RANDOMNESS</subject><subject>Weak mixing</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN2A65nePCZpcVVKfUDBhS7chWkeNoNNxiQV_fdmqAtXwoG7Oefe7x6ErjE0GDCf9U0XhoYAbhsoovQETTAseA20fT1FEwCgNVtgfo4uUuoBMGbtfIJmy8o677Kps9ubynwNwRufKxtiFTuvw75a76Lx1qRcvXXpEp3Z7j2Zq985Rc9365fVQ715un9cLTe1oguea24F5txqpQUj5bZizBCqiWjZVnPBFHBt6ZxvGWw1UCbAttgKwqidc0Kn6Oa4NaTsZFKFT-1U8N6oLAlhLSb0j2uI4eNQAGUfDtEXLIkFCCiXKS4ufHSpGFKKxsohun0XvyUGOXYne1m6k2N3EoooLZnbY8aUFz-diSOD8cpoF0cEHdw_6R_MFnO3</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Moudgalya, Sanjay</creator><creator>Chandra, Sarthak</creator><creator>Jain, Sudhir R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151001</creationdate><title>A finite-time exponent for random Ehrenfest gas</title><author>Moudgalya, Sanjay ; Chandra, Sarthak ; Jain, Sudhir R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6f7166fdcd742000c44e23d2754bd674c06df386b40bd03470f51f7243f8623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chaos</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Ehrenfest gas</topic><topic>Gases</topic><topic>LORENTZ GAS</topic><topic>Lyapunov exponent</topic><topic>LYAPUNOV METHOD</topic><topic>Physics</topic><topic>RANDOMNESS</topic><topic>Weak mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moudgalya, Sanjay</creatorcontrib><creatorcontrib>Chandra, Sarthak</creatorcontrib><creatorcontrib>Jain, Sudhir R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moudgalya, Sanjay</au><au>Chandra, Sarthak</au><au>Jain, Sudhir R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite-time exponent for random Ehrenfest gas</atitle><jtitle>Annals of physics</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>361</volume><spage>82</spage><epage>90</epage><pages>82-90</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit.
•We present a finite-time exponent for particles moving in a plane containing polygonal scatterers.•The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle.•Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule.•Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2015.05.033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2015-10, Vol.361, p.82-90 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22451232 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chaos CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Ehrenfest gas Gases LORENTZ GAS Lyapunov exponent LYAPUNOV METHOD Physics RANDOMNESS Weak mixing |
title | A finite-time exponent for random Ehrenfest gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite-time%20exponent%20for%20random%20Ehrenfest%20gas&rft.jtitle=Annals%20of%20physics&rft.au=Moudgalya,%20Sanjay&rft.date=2015-10-01&rft.volume=361&rft.spage=82&rft.epage=90&rft.pages=82-90&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2015.05.033&rft_dat=%3Cproquest_osti_%3E3788009141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707042031&rft_id=info:pmid/&rft_els_id=S0003491615002419&rfr_iscdi=true |