Stable static structures in models with higher-order derivatives

We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2015-09, Vol.360, p.194-206
Hauptverfasser: Bazeia, D., Lobão, A.S., Menezes, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue
container_start_page 194
container_title Annals of physics
container_volume 360
creator Bazeia, D.
Lobão, A.S.
Menezes, R.
description We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.
doi_str_mv 10.1016/j.aop.2015.05.017
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22451214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491615002018</els_id><sourcerecordid>3743293641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG8Fz615bdM0eFHEf7DgQQVvoUlfbcpusybpit_elPXgSZjHXGYew4-Qc6AZUKguh6yx2yynwDIaBfyALICKKqUFez8kC0ppkZYCqmNy4v1AKUDJ6gW5fgmNWmPiQxOMjuYmHSaHPjFjsrEtrn3yZUKf9OajR5da16JL4pldLOzQn5Kjrll7PPv1JXm7v3u9fUxXzw9PtzerVBeiCmlbtZqqTuV1yQvGGgQVtwpV1wp1LXJkBWhVd7pUeceVZlpwzgUWgmFbsrJYkov9X-uDkV6bgLrXdhxRB5nnJYMc_qS2zn5O6IMc7OTGOExCJSrgtKxoTME-pZ313mEnt85sGvctgcoZpxxkxClnnJJGAY-dq30nEsGdQTdvwFFja9w8obXmn_YPf2t85g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696170460</pqid></control><display><type>article</type><title>Stable static structures in models with higher-order derivatives</title><source>Elsevier ScienceDirect Journals</source><creator>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</creator><creatorcontrib>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</creatorcontrib><description>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2015.05.017</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ANALYTICAL SOLUTION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Domain walls ; EQUATIONS OF MOTION ; FOUR-DIMENSIONAL CALCULATIONS ; Kinks ; Quantum physics ; Scalability ; SCALAR FIELDS ; SPACE-TIME ; Symmetry ; SYMMETRY BREAKING</subject><ispartof>Annals of physics, 2015-09, Vol.360, p.194-206</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</citedby><cites>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</cites><orcidid>0000-0003-1335-3705 ; 0000-0003-2405-5113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003491615002018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22451214$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bazeia, D.</creatorcontrib><creatorcontrib>Lobão, A.S.</creatorcontrib><creatorcontrib>Menezes, R.</creatorcontrib><title>Stable static structures in models with higher-order derivatives</title><title>Annals of physics</title><description>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</description><subject>ANALYTICAL SOLUTION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Domain walls</subject><subject>EQUATIONS OF MOTION</subject><subject>FOUR-DIMENSIONAL CALCULATIONS</subject><subject>Kinks</subject><subject>Quantum physics</subject><subject>Scalability</subject><subject>SCALAR FIELDS</subject><subject>SPACE-TIME</subject><subject>Symmetry</subject><subject>SYMMETRY BREAKING</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG8Fz615bdM0eFHEf7DgQQVvoUlfbcpusybpit_elPXgSZjHXGYew4-Qc6AZUKguh6yx2yynwDIaBfyALICKKqUFez8kC0ppkZYCqmNy4v1AKUDJ6gW5fgmNWmPiQxOMjuYmHSaHPjFjsrEtrn3yZUKf9OajR5da16JL4pldLOzQn5Kjrll7PPv1JXm7v3u9fUxXzw9PtzerVBeiCmlbtZqqTuV1yQvGGgQVtwpV1wp1LXJkBWhVd7pUeceVZlpwzgUWgmFbsrJYkov9X-uDkV6bgLrXdhxRB5nnJYMc_qS2zn5O6IMc7OTGOExCJSrgtKxoTME-pZ313mEnt85sGvctgcoZpxxkxClnnJJGAY-dq30nEsGdQTdvwFFja9w8obXmn_YPf2t85g</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bazeia, D.</creator><creator>Lobão, A.S.</creator><creator>Menezes, R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid><orcidid>https://orcid.org/0000-0003-2405-5113</orcidid></search><sort><creationdate>20150901</creationdate><title>Stable static structures in models with higher-order derivatives</title><author>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Domain walls</topic><topic>EQUATIONS OF MOTION</topic><topic>FOUR-DIMENSIONAL CALCULATIONS</topic><topic>Kinks</topic><topic>Quantum physics</topic><topic>Scalability</topic><topic>SCALAR FIELDS</topic><topic>SPACE-TIME</topic><topic>Symmetry</topic><topic>SYMMETRY BREAKING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazeia, D.</creatorcontrib><creatorcontrib>Lobão, A.S.</creatorcontrib><creatorcontrib>Menezes, R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazeia, D.</au><au>Lobão, A.S.</au><au>Menezes, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable static structures in models with higher-order derivatives</atitle><jtitle>Annals of physics</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>360</volume><spage>194</spage><epage>206</epage><pages>194-206</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2015.05.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid><orcidid>https://orcid.org/0000-0003-2405-5113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2015-09, Vol.360, p.194-206
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22451214
source Elsevier ScienceDirect Journals
subjects ANALYTICAL SOLUTION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Domain walls
EQUATIONS OF MOTION
FOUR-DIMENSIONAL CALCULATIONS
Kinks
Quantum physics
Scalability
SCALAR FIELDS
SPACE-TIME
Symmetry
SYMMETRY BREAKING
title Stable static structures in models with higher-order derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20static%20structures%20in%20models%20with%20higher-order%20derivatives&rft.jtitle=Annals%20of%20physics&rft.au=Bazeia,%20D.&rft.date=2015-09-01&rft.volume=360&rft.spage=194&rft.epage=206&rft.pages=194-206&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2015.05.017&rft_dat=%3Cproquest_osti_%3E3743293641%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696170460&rft_id=info:pmid/&rft_els_id=S0003491615002018&rfr_iscdi=true