Stable static structures in models with higher-order derivatives
We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the pr...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2015-09, Vol.360, p.194-206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | |
container_start_page | 194 |
container_title | Annals of physics |
container_volume | 360 |
creator | Bazeia, D. Lobão, A.S. Menezes, R. |
description | We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself. |
doi_str_mv | 10.1016/j.aop.2015.05.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22451214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491615002018</els_id><sourcerecordid>3743293641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG8Fz615bdM0eFHEf7DgQQVvoUlfbcpusybpit_elPXgSZjHXGYew4-Qc6AZUKguh6yx2yynwDIaBfyALICKKqUFez8kC0ppkZYCqmNy4v1AKUDJ6gW5fgmNWmPiQxOMjuYmHSaHPjFjsrEtrn3yZUKf9OajR5da16JL4pldLOzQn5Kjrll7PPv1JXm7v3u9fUxXzw9PtzerVBeiCmlbtZqqTuV1yQvGGgQVtwpV1wp1LXJkBWhVd7pUeceVZlpwzgUWgmFbsrJYkov9X-uDkV6bgLrXdhxRB5nnJYMc_qS2zn5O6IMc7OTGOExCJSrgtKxoTME-pZ313mEnt85sGvctgcoZpxxkxClnnJJGAY-dq30nEsGdQTdvwFFja9w8obXmn_YPf2t85g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696170460</pqid></control><display><type>article</type><title>Stable static structures in models with higher-order derivatives</title><source>Elsevier ScienceDirect Journals</source><creator>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</creator><creatorcontrib>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</creatorcontrib><description>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2015.05.017</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ANALYTICAL SOLUTION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Domain walls ; EQUATIONS OF MOTION ; FOUR-DIMENSIONAL CALCULATIONS ; Kinks ; Quantum physics ; Scalability ; SCALAR FIELDS ; SPACE-TIME ; Symmetry ; SYMMETRY BREAKING</subject><ispartof>Annals of physics, 2015-09, Vol.360, p.194-206</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</citedby><cites>FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</cites><orcidid>0000-0003-1335-3705 ; 0000-0003-2405-5113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003491615002018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22451214$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bazeia, D.</creatorcontrib><creatorcontrib>Lobão, A.S.</creatorcontrib><creatorcontrib>Menezes, R.</creatorcontrib><title>Stable static structures in models with higher-order derivatives</title><title>Annals of physics</title><description>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</description><subject>ANALYTICAL SOLUTION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Domain walls</subject><subject>EQUATIONS OF MOTION</subject><subject>FOUR-DIMENSIONAL CALCULATIONS</subject><subject>Kinks</subject><subject>Quantum physics</subject><subject>Scalability</subject><subject>SCALAR FIELDS</subject><subject>SPACE-TIME</subject><subject>Symmetry</subject><subject>SYMMETRY BREAKING</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG8Fz615bdM0eFHEf7DgQQVvoUlfbcpusybpit_elPXgSZjHXGYew4-Qc6AZUKguh6yx2yynwDIaBfyALICKKqUFez8kC0ppkZYCqmNy4v1AKUDJ6gW5fgmNWmPiQxOMjuYmHSaHPjFjsrEtrn3yZUKf9OajR5da16JL4pldLOzQn5Kjrll7PPv1JXm7v3u9fUxXzw9PtzerVBeiCmlbtZqqTuV1yQvGGgQVtwpV1wp1LXJkBWhVd7pUeceVZlpwzgUWgmFbsrJYkov9X-uDkV6bgLrXdhxRB5nnJYMc_qS2zn5O6IMc7OTGOExCJSrgtKxoTME-pZ313mEnt85sGvctgcoZpxxkxClnnJJGAY-dq30nEsGdQTdvwFFja9w8obXmn_YPf2t85g</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bazeia, D.</creator><creator>Lobão, A.S.</creator><creator>Menezes, R.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid><orcidid>https://orcid.org/0000-0003-2405-5113</orcidid></search><sort><creationdate>20150901</creationdate><title>Stable static structures in models with higher-order derivatives</title><author>Bazeia, D. ; Lobão, A.S. ; Menezes, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-d6dc0bfb2847355ae1b0159b88bec892e531cb8fc4b2f7bc5c97779e395ed4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Domain walls</topic><topic>EQUATIONS OF MOTION</topic><topic>FOUR-DIMENSIONAL CALCULATIONS</topic><topic>Kinks</topic><topic>Quantum physics</topic><topic>Scalability</topic><topic>SCALAR FIELDS</topic><topic>SPACE-TIME</topic><topic>Symmetry</topic><topic>SYMMETRY BREAKING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazeia, D.</creatorcontrib><creatorcontrib>Lobão, A.S.</creatorcontrib><creatorcontrib>Menezes, R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazeia, D.</au><au>Lobão, A.S.</au><au>Menezes, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable static structures in models with higher-order derivatives</atitle><jtitle>Annals of physics</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>360</volume><spage>194</spage><epage>206</epage><pages>194-206</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2015.05.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid><orcidid>https://orcid.org/0000-0003-2405-5113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2015-09, Vol.360, p.194-206 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22451214 |
source | Elsevier ScienceDirect Journals |
subjects | ANALYTICAL SOLUTION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Domain walls EQUATIONS OF MOTION FOUR-DIMENSIONAL CALCULATIONS Kinks Quantum physics Scalability SCALAR FIELDS SPACE-TIME Symmetry SYMMETRY BREAKING |
title | Stable static structures in models with higher-order derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20static%20structures%20in%20models%20with%20higher-order%20derivatives&rft.jtitle=Annals%20of%20physics&rft.au=Bazeia,%20D.&rft.date=2015-09-01&rft.volume=360&rft.spage=194&rft.epage=206&rft.pages=194-206&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2015.05.017&rft_dat=%3Cproquest_osti_%3E3743293641%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696170460&rft_id=info:pmid/&rft_els_id=S0003491615002018&rfr_iscdi=true |