Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills

In this paper we use lattice simulation to study four dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 12 4 and for ’t Hooft couplings up to λ = 40 . 0. Our lattice action is based on a discretization of the Marcus or GL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-08, Vol.2023 (8), Article 84
Hauptverfasser: Catterall, Simon, Giedt, Joel, Toga, Goksu Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The journal of high energy physics
container_volume 2023
creator Catterall, Simon
Giedt, Joel
Toga, Goksu Can
description In this paper we use lattice simulation to study four dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 12 4 and for ’t Hooft couplings up to λ = 40 . 0. Our lattice action is based on a discretization of the Marcus or GL twist of $$ \mathcal{N} $$ N = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.
doi_str_mv 10.1007/JHEP08(2023)084
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2242433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_JHEP08_2023_084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1084-408012abdf93f6eb9f967e4d90cb49b91fad75cb15ec53fba7a64ccc403a82603</originalsourceid><addsrcrecordid>eNpNkMtLw0AYxBdRsFbPXhfpQQ-x3z7y2IOClGqV-jjoQRCWzZfdNpImYTceivi_mxIPnmYGhmH4EXLK4JIBpNOHxfwFsnMOXFxAJvfIiAFXUSZTtf_PH5KjED4BWMwUjMj1oqmalTftekudbza0Ml1XoqWTCf3YmG6Npvp--tnFKypp-Gqtp--mXkWPZVWFY3LgTBXsyZ-Oydvt_HW2iJbPd_ezm2WErP8SSciAcZMXTgmX2Fw5laRWFgowlypXzJkijTFnscVYuNykJpGIKEGYjCcgxuRs2G1CV-qAZWdxjU1dW-w055JLIfrSdCihb0Lw1unWlxvjt5qB3jHSAyO9Y6T7X-IXaqhXfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Catterall, Simon ; Giedt, Joel ; Toga, Goksu Can</creator><creatorcontrib>Catterall, Simon ; Giedt, Joel ; Toga, Goksu Can ; Syracuse Univ., NY (United States)</creatorcontrib><description>In this paper we use lattice simulation to study four dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 12 4 and for ’t Hooft couplings up to λ = 40 . 0. Our lattice action is based on a discretization of the Marcus or GL twist of $$ \mathcal{N} $$ N = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2023)084</identifier><language>eng</language><publisher>United States: Springer Nature</publisher><subject>Algorithms and theoretical developments ; Lattice quantum field theory ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Supersymmetric gauge theory ; t Hooft and Polyakov loops ; Wilson</subject><ispartof>The journal of high energy physics, 2023-08, Vol.2023 (8), Article 84</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1084-408012abdf93f6eb9f967e4d90cb49b91fad75cb15ec53fba7a64ccc403a82603</cites><orcidid>0000-0002-0316-2502 ; 0000000203162502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2242433$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Catterall, Simon</creatorcontrib><creatorcontrib>Giedt, Joel</creatorcontrib><creatorcontrib>Toga, Goksu Can</creatorcontrib><creatorcontrib>Syracuse Univ., NY (United States)</creatorcontrib><title>Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills</title><title>The journal of high energy physics</title><description>In this paper we use lattice simulation to study four dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 12 4 and for ’t Hooft couplings up to λ = 40 . 0. Our lattice action is based on a discretization of the Marcus or GL twist of $$ \mathcal{N} $$ N = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.</description><subject>Algorithms and theoretical developments</subject><subject>Lattice quantum field theory</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Supersymmetric gauge theory</subject><subject>t Hooft and Polyakov loops</subject><subject>Wilson</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLw0AYxBdRsFbPXhfpQQ-x3z7y2IOClGqV-jjoQRCWzZfdNpImYTceivi_mxIPnmYGhmH4EXLK4JIBpNOHxfwFsnMOXFxAJvfIiAFXUSZTtf_PH5KjED4BWMwUjMj1oqmalTftekudbza0Ml1XoqWTCf3YmG6Npvp--tnFKypp-Gqtp--mXkWPZVWFY3LgTBXsyZ-Oydvt_HW2iJbPd_ezm2WErP8SSciAcZMXTgmX2Fw5laRWFgowlypXzJkijTFnscVYuNykJpGIKEGYjCcgxuRs2G1CV-qAZWdxjU1dW-w055JLIfrSdCihb0Lw1unWlxvjt5qB3jHSAyO9Y6T7X-IXaqhXfw</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Catterall, Simon</creator><creator>Giedt, Joel</creator><creator>Toga, Goksu Can</creator><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0316-2502</orcidid><orcidid>https://orcid.org/0000000203162502</orcidid></search><sort><creationdate>20230816</creationdate><title>Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills</title><author>Catterall, Simon ; Giedt, Joel ; Toga, Goksu Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1084-408012abdf93f6eb9f967e4d90cb49b91fad75cb15ec53fba7a64ccc403a82603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms and theoretical developments</topic><topic>Lattice quantum field theory</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Supersymmetric gauge theory</topic><topic>t Hooft and Polyakov loops</topic><topic>Wilson</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catterall, Simon</creatorcontrib><creatorcontrib>Giedt, Joel</creatorcontrib><creatorcontrib>Toga, Goksu Can</creatorcontrib><creatorcontrib>Syracuse Univ., NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catterall, Simon</au><au>Giedt, Joel</au><au>Toga, Goksu Can</au><aucorp>Syracuse Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills</atitle><jtitle>The journal of high energy physics</jtitle><date>2023-08-16</date><risdate>2023</risdate><volume>2023</volume><issue>8</issue><artnum>84</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>In this paper we use lattice simulation to study four dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 12 4 and for ’t Hooft couplings up to λ = 40 . 0. Our lattice action is based on a discretization of the Marcus or GL twist of $$ \mathcal{N} $$ N = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.</abstract><cop>United States</cop><pub>Springer Nature</pub><doi>10.1007/JHEP08(2023)084</doi><orcidid>https://orcid.org/0000-0002-0316-2502</orcidid><orcidid>https://orcid.org/0000000203162502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-08, Vol.2023 (8), Article 84
issn 1029-8479
1029-8479
language eng
recordid cdi_osti_scitechconnect_2242433
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects Algorithms and theoretical developments
Lattice quantum field theory
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Supersymmetric gauge theory
t Hooft and Polyakov loops
Wilson
title Holography from lattice $$ \mathcal{N} $$ = 4 super Yang-Mills
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holography%20from%20lattice%20$$%20%5Cmathcal%7BN%7D%20$$%20=%204%20super%20Yang-Mills&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Catterall,%20Simon&rft.aucorp=Syracuse%20Univ.,%20NY%20(United%20States)&rft.date=2023-08-16&rft.volume=2023&rft.issue=8&rft.artnum=84&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2023)084&rft_dat=%3Ccrossref_osti_%3E10_1007_JHEP08_2023_084%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true