Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction
[Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitroge...
Gespeichert in:
Veröffentlicht in: | Materials research bulletin 2015-01, Vol.61, p.252-258 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | Materials research bulletin |
container_volume | 61 |
creator | Liang, Xianqing Zhong, Jun Shi, Yalin Guo, Jin Huang, Guolong Hong, Caihao Zhao, Yidong |
description | [Display omitted]
•A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly.
Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications. |
doi_str_mv | 10.1016/j.materresbull.2014.09.088 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22420764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002554081400590X</els_id><sourcerecordid>S002554081400590X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEuXyDhbMCceXNAkb4lYkJBaYGCzXPm5cpXFlB1A23oE35ElIVAZGpv8M_0XnI-SMQc6AzS_W-Ub3GCOm5Vvb5hyYzKHOoar2yIxVpcgk5-U-mQHwIiskVIfkKKU1AMiqLGfkdTHYGPoG40a3NA3deCafaHC08aumHWjn-xhW2GU2bNFShx9ZqweMdBX1tsEO6bvXNIXW2-_Pr5VONKI2vQ_dCTlwuk14-qvH5OXu9vl6kT0-3T9cXz1mRlR1nyGbu6VBWbK6cA7EUnMozKhSMiacwdpya6UW2jHkTOtC1Fo4O18yAeCkOCbnu96Qeq-S8T2axoSuQ9MrziWHcj65LncuE0NKEZ3aRr_RcVAM1ARTrdVfmGqCqaBWI8wxfLML4_jHu8c4zWBn0Po4rdjg_1PzA6X5iBk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</creator><creatorcontrib>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</creatorcontrib><description>[Display omitted]
•A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly.
Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/j.materresbull.2014.09.088</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>A. Nanostructures ; ABSORPTION SPECTROSCOPY ; AMINES ; AMMONIA ; ATOMIC FORCE MICROSCOPY ; B. Chemical synthesis ; C. Photoelectron spectroscopy ; C. XAFS (EXAFS and XANES) ; D. Electronic structure ; DOPED MATERIALS ; ELECTRONIC STRUCTURE ; FINE STRUCTURE ; GRAPHENE ; GRAPHITE ; HYDROTHERMAL SYNTHESIS ; HYDROTHERMAL SYSTEMS ; LAYERS ; MATERIALS SCIENCE ; MORPHOLOGY ; NANOSTRUCTURES ; TRANSMISSION ELECTRON MICROSCOPY ; X-RAY DIFFRACTION ; X-RAY PHOTOELECTRON SPECTROSCOPY ; X-RAY SPECTROSCOPY</subject><ispartof>Materials research bulletin, 2015-01, Vol.61, p.252-258</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</citedby><cites>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.materresbull.2014.09.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22420764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xianqing</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Shi, Yalin</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Huang, Guolong</creatorcontrib><creatorcontrib>Hong, Caihao</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><title>Materials research bulletin</title><description>[Display omitted]
•A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly.
Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</description><subject>A. Nanostructures</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>AMINES</subject><subject>AMMONIA</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>B. Chemical synthesis</subject><subject>C. Photoelectron spectroscopy</subject><subject>C. XAFS (EXAFS and XANES)</subject><subject>D. Electronic structure</subject><subject>DOPED MATERIALS</subject><subject>ELECTRONIC STRUCTURE</subject><subject>FINE STRUCTURE</subject><subject>GRAPHENE</subject><subject>GRAPHITE</subject><subject>HYDROTHERMAL SYNTHESIS</subject><subject>HYDROTHERMAL SYSTEMS</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>MORPHOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><subject>X-RAY PHOTOELECTRON SPECTROSCOPY</subject><subject>X-RAY SPECTROSCOPY</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEuXyDhbMCceXNAkb4lYkJBaYGCzXPm5cpXFlB1A23oE35ElIVAZGpv8M_0XnI-SMQc6AzS_W-Ub3GCOm5Vvb5hyYzKHOoar2yIxVpcgk5-U-mQHwIiskVIfkKKU1AMiqLGfkdTHYGPoG40a3NA3deCafaHC08aumHWjn-xhW2GU2bNFShx9ZqweMdBX1tsEO6bvXNIXW2-_Pr5VONKI2vQ_dCTlwuk14-qvH5OXu9vl6kT0-3T9cXz1mRlR1nyGbu6VBWbK6cA7EUnMozKhSMiacwdpya6UW2jHkTOtC1Fo4O18yAeCkOCbnu96Qeq-S8T2axoSuQ9MrziWHcj65LncuE0NKEZ3aRr_RcVAM1ARTrdVfmGqCqaBWI8wxfLML4_jHu8c4zWBn0Po4rdjg_1PzA6X5iBk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liang, Xianqing</creator><creator>Zhong, Jun</creator><creator>Shi, Yalin</creator><creator>Guo, Jin</creator><creator>Huang, Guolong</creator><creator>Hong, Caihao</creator><creator>Zhao, Yidong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><author>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Nanostructures</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>AMINES</topic><topic>AMMONIA</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>B. Chemical synthesis</topic><topic>C. Photoelectron spectroscopy</topic><topic>C. XAFS (EXAFS and XANES)</topic><topic>D. Electronic structure</topic><topic>DOPED MATERIALS</topic><topic>ELECTRONIC STRUCTURE</topic><topic>FINE STRUCTURE</topic><topic>GRAPHENE</topic><topic>GRAPHITE</topic><topic>HYDROTHERMAL SYNTHESIS</topic><topic>HYDROTHERMAL SYSTEMS</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>MORPHOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><topic>X-RAY PHOTOELECTRON SPECTROSCOPY</topic><topic>X-RAY SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xianqing</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Shi, Yalin</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Huang, Guolong</creatorcontrib><creatorcontrib>Hong, Caihao</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xianqing</au><au>Zhong, Jun</au><au>Shi, Yalin</au><au>Guo, Jin</au><au>Huang, Guolong</au><au>Hong, Caihao</au><au>Zhao, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</atitle><jtitle>Materials research bulletin</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>61</volume><spage>252</spage><epage>258</epage><pages>252-258</pages><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>[Display omitted]
•A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly.
Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.materresbull.2014.09.088</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5408 |
ispartof | Materials research bulletin, 2015-01, Vol.61, p.252-258 |
issn | 0025-5408 1873-4227 |
language | eng |
recordid | cdi_osti_scitechconnect_22420764 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A. Nanostructures ABSORPTION SPECTROSCOPY AMINES AMMONIA ATOMIC FORCE MICROSCOPY B. Chemical synthesis C. Photoelectron spectroscopy C. XAFS (EXAFS and XANES) D. Electronic structure DOPED MATERIALS ELECTRONIC STRUCTURE FINE STRUCTURE GRAPHENE GRAPHITE HYDROTHERMAL SYNTHESIS HYDROTHERMAL SYSTEMS LAYERS MATERIALS SCIENCE MORPHOLOGY NANOSTRUCTURES TRANSMISSION ELECTRON MICROSCOPY X-RAY DIFFRACTION X-RAY PHOTOELECTRON SPECTROSCOPY X-RAY SPECTROSCOPY |
title | Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20of%20highly%20nitrogen-doped%20few-layer%20graphene%20via%20solid%E2%80%93gas%20reaction&rft.jtitle=Materials%20research%20bulletin&rft.au=Liang,%20Xianqing&rft.date=2015-01-01&rft.volume=61&rft.spage=252&rft.epage=258&rft.pages=252-258&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/j.materresbull.2014.09.088&rft_dat=%3Celsevier_osti_%3ES002554081400590X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002554081400590X&rfr_iscdi=true |