Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

[Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research bulletin 2015-01, Vol.61, p.252-258
Hauptverfasser: Liang, Xianqing, Zhong, Jun, Shi, Yalin, Guo, Jin, Huang, Guolong, Hong, Caihao, Zhao, Yidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 252
container_title Materials research bulletin
container_volume 61
creator Liang, Xianqing
Zhong, Jun
Shi, Yalin
Guo, Jin
Huang, Guolong
Hong, Caihao
Zhao, Yidong
description [Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.
doi_str_mv 10.1016/j.materresbull.2014.09.088
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22420764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002554081400590X</els_id><sourcerecordid>S002554081400590X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEuXyDhbMCceXNAkb4lYkJBaYGCzXPm5cpXFlB1A23oE35ElIVAZGpv8M_0XnI-SMQc6AzS_W-Ub3GCOm5Vvb5hyYzKHOoar2yIxVpcgk5-U-mQHwIiskVIfkKKU1AMiqLGfkdTHYGPoG40a3NA3deCafaHC08aumHWjn-xhW2GU2bNFShx9ZqweMdBX1tsEO6bvXNIXW2-_Pr5VONKI2vQ_dCTlwuk14-qvH5OXu9vl6kT0-3T9cXz1mRlR1nyGbu6VBWbK6cA7EUnMozKhSMiacwdpya6UW2jHkTOtC1Fo4O18yAeCkOCbnu96Qeq-S8T2axoSuQ9MrziWHcj65LncuE0NKEZ3aRr_RcVAM1ARTrdVfmGqCqaBWI8wxfLML4_jHu8c4zWBn0Po4rdjg_1PzA6X5iBk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</creator><creatorcontrib>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</creatorcontrib><description>[Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/j.materresbull.2014.09.088</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>A. Nanostructures ; ABSORPTION SPECTROSCOPY ; AMINES ; AMMONIA ; ATOMIC FORCE MICROSCOPY ; B. Chemical synthesis ; C. Photoelectron spectroscopy ; C. XAFS (EXAFS and XANES) ; D. Electronic structure ; DOPED MATERIALS ; ELECTRONIC STRUCTURE ; FINE STRUCTURE ; GRAPHENE ; GRAPHITE ; HYDROTHERMAL SYNTHESIS ; HYDROTHERMAL SYSTEMS ; LAYERS ; MATERIALS SCIENCE ; MORPHOLOGY ; NANOSTRUCTURES ; TRANSMISSION ELECTRON MICROSCOPY ; X-RAY DIFFRACTION ; X-RAY PHOTOELECTRON SPECTROSCOPY ; X-RAY SPECTROSCOPY</subject><ispartof>Materials research bulletin, 2015-01, Vol.61, p.252-258</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</citedby><cites>FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.materresbull.2014.09.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22420764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xianqing</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Shi, Yalin</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Huang, Guolong</creatorcontrib><creatorcontrib>Hong, Caihao</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><title>Materials research bulletin</title><description>[Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</description><subject>A. Nanostructures</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>AMINES</subject><subject>AMMONIA</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>B. Chemical synthesis</subject><subject>C. Photoelectron spectroscopy</subject><subject>C. XAFS (EXAFS and XANES)</subject><subject>D. Electronic structure</subject><subject>DOPED MATERIALS</subject><subject>ELECTRONIC STRUCTURE</subject><subject>FINE STRUCTURE</subject><subject>GRAPHENE</subject><subject>GRAPHITE</subject><subject>HYDROTHERMAL SYNTHESIS</subject><subject>HYDROTHERMAL SYSTEMS</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>MORPHOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><subject>X-RAY PHOTOELECTRON SPECTROSCOPY</subject><subject>X-RAY SPECTROSCOPY</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEuXyDhbMCceXNAkb4lYkJBaYGCzXPm5cpXFlB1A23oE35ElIVAZGpv8M_0XnI-SMQc6AzS_W-Ub3GCOm5Vvb5hyYzKHOoar2yIxVpcgk5-U-mQHwIiskVIfkKKU1AMiqLGfkdTHYGPoG40a3NA3deCafaHC08aumHWjn-xhW2GU2bNFShx9ZqweMdBX1tsEO6bvXNIXW2-_Pr5VONKI2vQ_dCTlwuk14-qvH5OXu9vl6kT0-3T9cXz1mRlR1nyGbu6VBWbK6cA7EUnMozKhSMiacwdpya6UW2jHkTOtC1Fo4O18yAeCkOCbnu96Qeq-S8T2axoSuQ9MrziWHcj65LncuE0NKEZ3aRr_RcVAM1ARTrdVfmGqCqaBWI8wxfLML4_jHu8c4zWBn0Po4rdjg_1PzA6X5iBk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liang, Xianqing</creator><creator>Zhong, Jun</creator><creator>Shi, Yalin</creator><creator>Guo, Jin</creator><creator>Huang, Guolong</creator><creator>Hong, Caihao</creator><creator>Zhao, Yidong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</title><author>Liang, Xianqing ; Zhong, Jun ; Shi, Yalin ; Guo, Jin ; Huang, Guolong ; Hong, Caihao ; Zhao, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e16fbce47195ff03ba205c03b44113fce9d2dd4a3af1e21aa539a3fd6b1300f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A. Nanostructures</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>AMINES</topic><topic>AMMONIA</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>B. Chemical synthesis</topic><topic>C. Photoelectron spectroscopy</topic><topic>C. XAFS (EXAFS and XANES)</topic><topic>D. Electronic structure</topic><topic>DOPED MATERIALS</topic><topic>ELECTRONIC STRUCTURE</topic><topic>FINE STRUCTURE</topic><topic>GRAPHENE</topic><topic>GRAPHITE</topic><topic>HYDROTHERMAL SYNTHESIS</topic><topic>HYDROTHERMAL SYSTEMS</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>MORPHOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><topic>X-RAY PHOTOELECTRON SPECTROSCOPY</topic><topic>X-RAY SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xianqing</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Shi, Yalin</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Huang, Guolong</creatorcontrib><creatorcontrib>Hong, Caihao</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xianqing</au><au>Zhong, Jun</au><au>Shi, Yalin</au><au>Guo, Jin</au><au>Huang, Guolong</au><au>Hong, Caihao</au><au>Zhao, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction</atitle><jtitle>Materials research bulletin</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>61</volume><spage>252</spage><epage>258</epage><pages>252-258</pages><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>[Display omitted] •A novel approach to synthesis of N-doped few-layer graphene has been developed.•The high doping levels of N in products are achieved.•XPS and XANES results reveal a thermal transformation of N bonding configurations.•The developed method is cost-effective and eco-friendly. Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.materresbull.2014.09.088</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5408
ispartof Materials research bulletin, 2015-01, Vol.61, p.252-258
issn 0025-5408
1873-4227
language eng
recordid cdi_osti_scitechconnect_22420764
source ScienceDirect Journals (5 years ago - present)
subjects A. Nanostructures
ABSORPTION SPECTROSCOPY
AMINES
AMMONIA
ATOMIC FORCE MICROSCOPY
B. Chemical synthesis
C. Photoelectron spectroscopy
C. XAFS (EXAFS and XANES)
D. Electronic structure
DOPED MATERIALS
ELECTRONIC STRUCTURE
FINE STRUCTURE
GRAPHENE
GRAPHITE
HYDROTHERMAL SYNTHESIS
HYDROTHERMAL SYSTEMS
LAYERS
MATERIALS SCIENCE
MORPHOLOGY
NANOSTRUCTURES
TRANSMISSION ELECTRON MICROSCOPY
X-RAY DIFFRACTION
X-RAY PHOTOELECTRON SPECTROSCOPY
X-RAY SPECTROSCOPY
title Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20of%20highly%20nitrogen-doped%20few-layer%20graphene%20via%20solid%E2%80%93gas%20reaction&rft.jtitle=Materials%20research%20bulletin&rft.au=Liang,%20Xianqing&rft.date=2015-01-01&rft.volume=61&rft.spage=252&rft.epage=258&rft.pages=252-258&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/j.materresbull.2014.09.088&rft_dat=%3Celsevier_osti_%3ES002554081400590X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002554081400590X&rfr_iscdi=true