Universal tight binding model for chemical reactions in solution and at surfaces. I. Organic molecules
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energ...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-07, Vol.141 (4), p.044503-044503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4887095 |