Reversible inactivation of CO dehydrogenase with thiol compounds
[Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuS...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2014-05, Vol.447 (3), p.413-418 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 3 |
container_start_page | 413 |
container_title | Biochemical and biophysical research communications |
container_volume | 447 |
creator | Kreß, Oliver Gnida, Manuel Pelzmann, Astrid M. Marx, Christian Meyer-Klaucke, Wolfram Meyer, Ortwin |
description | [Display omitted]
•Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed. |
doi_str_mv | 10.1016/j.bbrc.2014.03.147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22416421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X1400607X</els_id><sourcerecordid>1524171799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVoaaZp_0AWxdBNNnbvlTWyDV00DH0EAoGQQHdCj-uOBo81kTQT8u9jM0mXWd3Ndw7nfoydI1QIKL9tKmOirTigqKCuUDQnbIHQQckRxDu2AABZ8g7_nrKPKW0AEIXsPrBTLhpspGgX7MctHSgmbwYq_Kht9gedfRiL0Berm8LR-snF8I9Gnah49Hld5LUPQ2HDdhf2o0uf2PteD4k-v9wzdv_r593qT3l98_tqdXldWsHbXGrupKBOdpbIgtOyrTn0XBhuup5zCU3jlqCNxrq1fVtjL127NI2hunXO1fUZ-3rsDSl7lazPZNc2jCPZrDgXKAXHibo4UrsYHvaUstr6ZGkY9EhhnxQuJ3L6vesmlB9RG0NKkXq1i36r45NCULNftVGzXzX7VVCrye8U-vLSvzdbcv8jr0In4PsRoMnFwVOcp9Joyfk4L3XBv9X_DMZfi3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524171799</pqid></control><display><type>article</type><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</creator><creatorcontrib>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</creatorcontrib><description>[Display omitted]
•Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2014.03.147</identifier><identifier>PMID: 24717648</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION SPECTROSCOPY ; Aldehyde Oxidoreductases - antagonists & inhibitors ; Aldehyde Oxidoreductases - chemistry ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; Bradyrhizobiaceae - enzymology ; CARBON DIOXIDE ; CARBON MONOXIDE ; Carbon monoxide dehydrogenase regulation ; Catalytic Domain - drug effects ; COENZYMES ; CONCENTRATION RATIO ; Copper ; Copper - chemistry ; COPPER IONS ; CYSTEINE ; ELECTRON SPIN RESONANCE ; Electron Spin Resonance Spectroscopy ; GLYCINE ; HOMOCYSTEINE ; HYDROXYLASES ; IN VITRO ; INACTIVATION ; INHIBITION ; LIGANDS ; MOLYBDENUM ; Molybdenum - chemistry ; Multienzyme Complexes - antagonists & inhibitors ; Multienzyme Complexes - chemistry ; Oligotropha carboxidovorans ; OXIDATION ; Oxidation-Reduction ; SUBSTRATES ; Sulfhydryl Compounds - pharmacology ; Thiol ; X-ray absorption spectroscopy ; X-RAY SPECTROSCOPY</subject><ispartof>Biochemical and biophysical research communications, 2014-05, Vol.447 (3), p.413-418</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</citedby><cites>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X1400607X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24717648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22416421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreß, Oliver</creatorcontrib><creatorcontrib>Gnida, Manuel</creatorcontrib><creatorcontrib>Pelzmann, Astrid M.</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Meyer-Klaucke, Wolfram</creatorcontrib><creatorcontrib>Meyer, Ortwin</creatorcontrib><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>[Display omitted]
•Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>Aldehyde Oxidoreductases - antagonists & inhibitors</subject><subject>Aldehyde Oxidoreductases - chemistry</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bradyrhizobiaceae - enzymology</subject><subject>CARBON DIOXIDE</subject><subject>CARBON MONOXIDE</subject><subject>Carbon monoxide dehydrogenase regulation</subject><subject>Catalytic Domain - drug effects</subject><subject>COENZYMES</subject><subject>CONCENTRATION RATIO</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>COPPER IONS</subject><subject>CYSTEINE</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>GLYCINE</subject><subject>HOMOCYSTEINE</subject><subject>HYDROXYLASES</subject><subject>IN VITRO</subject><subject>INACTIVATION</subject><subject>INHIBITION</subject><subject>LIGANDS</subject><subject>MOLYBDENUM</subject><subject>Molybdenum - chemistry</subject><subject>Multienzyme Complexes - antagonists & inhibitors</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Oligotropha carboxidovorans</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>SUBSTRATES</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Thiol</subject><subject>X-ray absorption spectroscopy</subject><subject>X-RAY SPECTROSCOPY</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAUhUVoaaZp_0AWxdBNNnbvlTWyDV00DH0EAoGQQHdCj-uOBo81kTQT8u9jM0mXWd3Ndw7nfoydI1QIKL9tKmOirTigqKCuUDQnbIHQQckRxDu2AABZ8g7_nrKPKW0AEIXsPrBTLhpspGgX7MctHSgmbwYq_Kht9gedfRiL0Berm8LR-snF8I9Gnah49Hld5LUPQ2HDdhf2o0uf2PteD4k-v9wzdv_r593qT3l98_tqdXldWsHbXGrupKBOdpbIgtOyrTn0XBhuup5zCU3jlqCNxrq1fVtjL127NI2hunXO1fUZ-3rsDSl7lazPZNc2jCPZrDgXKAXHibo4UrsYHvaUstr6ZGkY9EhhnxQuJ3L6vesmlB9RG0NKkXq1i36r45NCULNftVGzXzX7VVCrye8U-vLSvzdbcv8jr0In4PsRoMnFwVOcp9Joyfk4L3XBv9X_DMZfi3Y</recordid><startdate>20140509</startdate><enddate>20140509</enddate><creator>Kreß, Oliver</creator><creator>Gnida, Manuel</creator><creator>Pelzmann, Astrid M.</creator><creator>Marx, Christian</creator><creator>Meyer-Klaucke, Wolfram</creator><creator>Meyer, Ortwin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140509</creationdate><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><author>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>Aldehyde Oxidoreductases - antagonists & inhibitors</topic><topic>Aldehyde Oxidoreductases - chemistry</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bradyrhizobiaceae - enzymology</topic><topic>CARBON DIOXIDE</topic><topic>CARBON MONOXIDE</topic><topic>Carbon monoxide dehydrogenase regulation</topic><topic>Catalytic Domain - drug effects</topic><topic>COENZYMES</topic><topic>CONCENTRATION RATIO</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>COPPER IONS</topic><topic>CYSTEINE</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>GLYCINE</topic><topic>HOMOCYSTEINE</topic><topic>HYDROXYLASES</topic><topic>IN VITRO</topic><topic>INACTIVATION</topic><topic>INHIBITION</topic><topic>LIGANDS</topic><topic>MOLYBDENUM</topic><topic>Molybdenum - chemistry</topic><topic>Multienzyme Complexes - antagonists & inhibitors</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Oligotropha carboxidovorans</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>SUBSTRATES</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Thiol</topic><topic>X-ray absorption spectroscopy</topic><topic>X-RAY SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreß, Oliver</creatorcontrib><creatorcontrib>Gnida, Manuel</creatorcontrib><creatorcontrib>Pelzmann, Astrid M.</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Meyer-Klaucke, Wolfram</creatorcontrib><creatorcontrib>Meyer, Ortwin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreß, Oliver</au><au>Gnida, Manuel</au><au>Pelzmann, Astrid M.</au><au>Marx, Christian</au><au>Meyer-Klaucke, Wolfram</au><au>Meyer, Ortwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible inactivation of CO dehydrogenase with thiol compounds</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2014-05-09</date><risdate>2014</risdate><volume>447</volume><issue>3</issue><spage>413</spage><epage>418</epage><pages>413-418</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>[Display omitted]
•Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24717648</pmid><doi>10.1016/j.bbrc.2014.03.147</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2014-05, Vol.447 (3), p.413-418 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_osti_scitechconnect_22416421 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 60 APPLIED LIFE SCIENCES ABSORPTION SPECTROSCOPY Aldehyde Oxidoreductases - antagonists & inhibitors Aldehyde Oxidoreductases - chemistry Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry Bradyrhizobiaceae - enzymology CARBON DIOXIDE CARBON MONOXIDE Carbon monoxide dehydrogenase regulation Catalytic Domain - drug effects COENZYMES CONCENTRATION RATIO Copper Copper - chemistry COPPER IONS CYSTEINE ELECTRON SPIN RESONANCE Electron Spin Resonance Spectroscopy GLYCINE HOMOCYSTEINE HYDROXYLASES IN VITRO INACTIVATION INHIBITION LIGANDS MOLYBDENUM Molybdenum - chemistry Multienzyme Complexes - antagonists & inhibitors Multienzyme Complexes - chemistry Oligotropha carboxidovorans OXIDATION Oxidation-Reduction SUBSTRATES Sulfhydryl Compounds - pharmacology Thiol X-ray absorption spectroscopy X-RAY SPECTROSCOPY |
title | Reversible inactivation of CO dehydrogenase with thiol compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20inactivation%20of%20CO%20dehydrogenase%20with%20thiol%20compounds&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kre%C3%9F,%20Oliver&rft.date=2014-05-09&rft.volume=447&rft.issue=3&rft.spage=413&rft.epage=418&rft.pages=413-418&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2014.03.147&rft_dat=%3Cproquest_osti_%3E1524171799%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524171799&rft_id=info:pmid/24717648&rft_els_id=S0006291X1400607X&rfr_iscdi=true |