Reversible inactivation of CO dehydrogenase with thiol compounds

[Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2014-05, Vol.447 (3), p.413-418
Hauptverfasser: Kreß, Oliver, Gnida, Manuel, Pelzmann, Astrid M., Marx, Christian, Meyer-Klaucke, Wolfram, Meyer, Ortwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 3
container_start_page 413
container_title Biochemical and biophysical research communications
container_volume 447
creator Kreß, Oliver
Gnida, Manuel
Pelzmann, Astrid M.
Marx, Christian
Meyer-Klaucke, Wolfram
Meyer, Ortwin
description [Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand. Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.
doi_str_mv 10.1016/j.bbrc.2014.03.147
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22416421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X1400607X</els_id><sourcerecordid>1524171799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVoaaZp_0AWxdBNNnbvlTWyDV00DH0EAoGQQHdCj-uOBo81kTQT8u9jM0mXWd3Ndw7nfoydI1QIKL9tKmOirTigqKCuUDQnbIHQQckRxDu2AABZ8g7_nrKPKW0AEIXsPrBTLhpspGgX7MctHSgmbwYq_Kht9gedfRiL0Berm8LR-snF8I9Gnah49Hld5LUPQ2HDdhf2o0uf2PteD4k-v9wzdv_r593qT3l98_tqdXldWsHbXGrupKBOdpbIgtOyrTn0XBhuup5zCU3jlqCNxrq1fVtjL127NI2hunXO1fUZ-3rsDSl7lazPZNc2jCPZrDgXKAXHibo4UrsYHvaUstr6ZGkY9EhhnxQuJ3L6vesmlB9RG0NKkXq1i36r45NCULNftVGzXzX7VVCrye8U-vLSvzdbcv8jr0In4PsRoMnFwVOcp9Joyfk4L3XBv9X_DMZfi3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524171799</pqid></control><display><type>article</type><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</creator><creatorcontrib>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</creatorcontrib><description>[Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand. Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2014.03.147</identifier><identifier>PMID: 24717648</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION SPECTROSCOPY ; Aldehyde Oxidoreductases - antagonists &amp; inhibitors ; Aldehyde Oxidoreductases - chemistry ; Bacterial Proteins - antagonists &amp; inhibitors ; Bacterial Proteins - chemistry ; Bradyrhizobiaceae - enzymology ; CARBON DIOXIDE ; CARBON MONOXIDE ; Carbon monoxide dehydrogenase regulation ; Catalytic Domain - drug effects ; COENZYMES ; CONCENTRATION RATIO ; Copper ; Copper - chemistry ; COPPER IONS ; CYSTEINE ; ELECTRON SPIN RESONANCE ; Electron Spin Resonance Spectroscopy ; GLYCINE ; HOMOCYSTEINE ; HYDROXYLASES ; IN VITRO ; INACTIVATION ; INHIBITION ; LIGANDS ; MOLYBDENUM ; Molybdenum - chemistry ; Multienzyme Complexes - antagonists &amp; inhibitors ; Multienzyme Complexes - chemistry ; Oligotropha carboxidovorans ; OXIDATION ; Oxidation-Reduction ; SUBSTRATES ; Sulfhydryl Compounds - pharmacology ; Thiol ; X-ray absorption spectroscopy ; X-RAY SPECTROSCOPY</subject><ispartof>Biochemical and biophysical research communications, 2014-05, Vol.447 (3), p.413-418</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</citedby><cites>FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X1400607X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24717648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22416421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreß, Oliver</creatorcontrib><creatorcontrib>Gnida, Manuel</creatorcontrib><creatorcontrib>Pelzmann, Astrid M.</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Meyer-Klaucke, Wolfram</creatorcontrib><creatorcontrib>Meyer, Ortwin</creatorcontrib><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>[Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand. Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>Aldehyde Oxidoreductases - antagonists &amp; inhibitors</subject><subject>Aldehyde Oxidoreductases - chemistry</subject><subject>Bacterial Proteins - antagonists &amp; inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bradyrhizobiaceae - enzymology</subject><subject>CARBON DIOXIDE</subject><subject>CARBON MONOXIDE</subject><subject>Carbon monoxide dehydrogenase regulation</subject><subject>Catalytic Domain - drug effects</subject><subject>COENZYMES</subject><subject>CONCENTRATION RATIO</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>COPPER IONS</subject><subject>CYSTEINE</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>GLYCINE</subject><subject>HOMOCYSTEINE</subject><subject>HYDROXYLASES</subject><subject>IN VITRO</subject><subject>INACTIVATION</subject><subject>INHIBITION</subject><subject>LIGANDS</subject><subject>MOLYBDENUM</subject><subject>Molybdenum - chemistry</subject><subject>Multienzyme Complexes - antagonists &amp; inhibitors</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Oligotropha carboxidovorans</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>SUBSTRATES</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Thiol</subject><subject>X-ray absorption spectroscopy</subject><subject>X-RAY SPECTROSCOPY</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAUhUVoaaZp_0AWxdBNNnbvlTWyDV00DH0EAoGQQHdCj-uOBo81kTQT8u9jM0mXWd3Ndw7nfoydI1QIKL9tKmOirTigqKCuUDQnbIHQQckRxDu2AABZ8g7_nrKPKW0AEIXsPrBTLhpspGgX7MctHSgmbwYq_Kht9gedfRiL0Berm8LR-snF8I9Gnah49Hld5LUPQ2HDdhf2o0uf2PteD4k-v9wzdv_r593qT3l98_tqdXldWsHbXGrupKBOdpbIgtOyrTn0XBhuup5zCU3jlqCNxrq1fVtjL127NI2hunXO1fUZ-3rsDSl7lazPZNc2jCPZrDgXKAXHibo4UrsYHvaUstr6ZGkY9EhhnxQuJ3L6vesmlB9RG0NKkXq1i36r45NCULNftVGzXzX7VVCrye8U-vLSvzdbcv8jr0In4PsRoMnFwVOcp9Joyfk4L3XBv9X_DMZfi3Y</recordid><startdate>20140509</startdate><enddate>20140509</enddate><creator>Kreß, Oliver</creator><creator>Gnida, Manuel</creator><creator>Pelzmann, Astrid M.</creator><creator>Marx, Christian</creator><creator>Meyer-Klaucke, Wolfram</creator><creator>Meyer, Ortwin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140509</creationdate><title>Reversible inactivation of CO dehydrogenase with thiol compounds</title><author>Kreß, Oliver ; Gnida, Manuel ; Pelzmann, Astrid M. ; Marx, Christian ; Meyer-Klaucke, Wolfram ; Meyer, Ortwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a2d64e969ceec0da68320f24b2b9f226077d50aba138cf831f6d85b7be38ddd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>Aldehyde Oxidoreductases - antagonists &amp; inhibitors</topic><topic>Aldehyde Oxidoreductases - chemistry</topic><topic>Bacterial Proteins - antagonists &amp; inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bradyrhizobiaceae - enzymology</topic><topic>CARBON DIOXIDE</topic><topic>CARBON MONOXIDE</topic><topic>Carbon monoxide dehydrogenase regulation</topic><topic>Catalytic Domain - drug effects</topic><topic>COENZYMES</topic><topic>CONCENTRATION RATIO</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>COPPER IONS</topic><topic>CYSTEINE</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>GLYCINE</topic><topic>HOMOCYSTEINE</topic><topic>HYDROXYLASES</topic><topic>IN VITRO</topic><topic>INACTIVATION</topic><topic>INHIBITION</topic><topic>LIGANDS</topic><topic>MOLYBDENUM</topic><topic>Molybdenum - chemistry</topic><topic>Multienzyme Complexes - antagonists &amp; inhibitors</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Oligotropha carboxidovorans</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>SUBSTRATES</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Thiol</topic><topic>X-ray absorption spectroscopy</topic><topic>X-RAY SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreß, Oliver</creatorcontrib><creatorcontrib>Gnida, Manuel</creatorcontrib><creatorcontrib>Pelzmann, Astrid M.</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Meyer-Klaucke, Wolfram</creatorcontrib><creatorcontrib>Meyer, Ortwin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreß, Oliver</au><au>Gnida, Manuel</au><au>Pelzmann, Astrid M.</au><au>Marx, Christian</au><au>Meyer-Klaucke, Wolfram</au><au>Meyer, Ortwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible inactivation of CO dehydrogenase with thiol compounds</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2014-05-09</date><risdate>2014</risdate><volume>447</volume><issue>3</issue><spage>413</spage><epage>418</epage><pages>413-418</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>[Display omitted] •Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase.•CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols.•Inhibition by thiols was reversed by CO or upon lowering the thiol concentration.•Thiols coordinate the Cu ion in the [CuSMo(O)OH] active site as a third ligand. Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e−+2H+) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[MoVI(O)OH(2)SCuI(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24717648</pmid><doi>10.1016/j.bbrc.2014.03.147</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2014-05, Vol.447 (3), p.413-418
issn 0006-291X
1090-2104
language eng
recordid cdi_osti_scitechconnect_22416421
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
ABSORPTION SPECTROSCOPY
Aldehyde Oxidoreductases - antagonists & inhibitors
Aldehyde Oxidoreductases - chemistry
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bradyrhizobiaceae - enzymology
CARBON DIOXIDE
CARBON MONOXIDE
Carbon monoxide dehydrogenase regulation
Catalytic Domain - drug effects
COENZYMES
CONCENTRATION RATIO
Copper
Copper - chemistry
COPPER IONS
CYSTEINE
ELECTRON SPIN RESONANCE
Electron Spin Resonance Spectroscopy
GLYCINE
HOMOCYSTEINE
HYDROXYLASES
IN VITRO
INACTIVATION
INHIBITION
LIGANDS
MOLYBDENUM
Molybdenum - chemistry
Multienzyme Complexes - antagonists & inhibitors
Multienzyme Complexes - chemistry
Oligotropha carboxidovorans
OXIDATION
Oxidation-Reduction
SUBSTRATES
Sulfhydryl Compounds - pharmacology
Thiol
X-ray absorption spectroscopy
X-RAY SPECTROSCOPY
title Reversible inactivation of CO dehydrogenase with thiol compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20inactivation%20of%20CO%20dehydrogenase%20with%20thiol%20compounds&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kre%C3%9F,%20Oliver&rft.date=2014-05-09&rft.volume=447&rft.issue=3&rft.spage=413&rft.epage=418&rft.pages=413-418&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2014.03.147&rft_dat=%3Cproquest_osti_%3E1524171799%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524171799&rft_id=info:pmid/24717648&rft_els_id=S0006291X1400607X&rfr_iscdi=true