Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, na...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-01, Vol.142 (4), p.044501-044501 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044501 |
---|---|
container_issue | 4 |
container_start_page | 044501 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Michalis, Vasileios K Costandy, Joseph Tsimpanogiannis, Ioannis N Stubos, Athanassios K Economou, Ioannis G |
description | The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models. |
doi_str_mv | 10.1063/1.4905572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22416051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124941902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</originalsourceid><addsrcrecordid>eNpFkUtLxDAUhYMozvhY-Aek4EYXHfNq2ixl8AUDutB1SNMbG-k0Y5KC8-_tOOO4unD4zuEeDkIXBM8IFuyWzLjERVHSAzQluJJ5KSQ-RFOMKcmlwGKCTmL8xBiTkvJjNKGFYKWs5BTBa4DGmeR8n3mbpRayVasjZPA1uM7VwemNvoTU6h6ydt0EnSBmQ3T9xy_euAAm7VzGw7eLCXoDvx7f-M5_rM_QkdVdhPPdPUXvD_dv86d88fL4PL9b5IZzmnLB64YVBatZXRNhNbXWcM2sqGhTN4CltRXIGojAUupSGwJCU1FYVgGxVLBTdLXN9TE5FY1LYFrj-378UFHKR2NBRup6S62C_xogJrV00UDXjQ39EBURBeWswpz9B-7RTz-EfuygKKFcciIxHambLWWCjzGAVavgljqsFcFqs5AiarfQyF7uEod6Cc2e_JuE_QAS_Iso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124941902</pqid></control><display><type>article</type><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</creator><creatorcontrib>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</creatorcontrib><description>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4905572</identifier><identifier>PMID: 25637989</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; BUBBLES ; Computer simulation ; DISSOCIATION ; Equilibrium conditions ; GAS HYDRATES ; ICE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Melt temperature ; MELTING POINTS ; METHANE ; Methane hydrates ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; PHASE DIAGRAMS ; Phase equilibria ; PHASE STABILITY ; PHASE STUDIES ; Physics ; Predictions ; SCALE MODELS ; SOLUBILITY ; SUPERSATURATION ; WATER</subject><ispartof>The Journal of chemical physics, 2015-01, Vol.142 (4), p.044501-044501</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</citedby><cites>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</cites><orcidid>0000-0002-2409-6831 ; 0000-0003-3070-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25637989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22416051$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalis, Vasileios K</creatorcontrib><creatorcontrib>Costandy, Joseph</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N</creatorcontrib><creatorcontrib>Stubos, Athanassios K</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</description><subject>Accuracy</subject><subject>BUBBLES</subject><subject>Computer simulation</subject><subject>DISSOCIATION</subject><subject>Equilibrium conditions</subject><subject>GAS HYDRATES</subject><subject>ICE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Melt temperature</subject><subject>MELTING POINTS</subject><subject>METHANE</subject><subject>Methane hydrates</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>PHASE DIAGRAMS</subject><subject>Phase equilibria</subject><subject>PHASE STABILITY</subject><subject>PHASE STUDIES</subject><subject>Physics</subject><subject>Predictions</subject><subject>SCALE MODELS</subject><subject>SOLUBILITY</subject><subject>SUPERSATURATION</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAUhYMozvhY-Aek4EYXHfNq2ixl8AUDutB1SNMbG-k0Y5KC8-_tOOO4unD4zuEeDkIXBM8IFuyWzLjERVHSAzQluJJ5KSQ-RFOMKcmlwGKCTmL8xBiTkvJjNKGFYKWs5BTBa4DGmeR8n3mbpRayVasjZPA1uM7VwemNvoTU6h6ydt0EnSBmQ3T9xy_euAAm7VzGw7eLCXoDvx7f-M5_rM_QkdVdhPPdPUXvD_dv86d88fL4PL9b5IZzmnLB64YVBatZXRNhNbXWcM2sqGhTN4CltRXIGojAUupSGwJCU1FYVgGxVLBTdLXN9TE5FY1LYFrj-378UFHKR2NBRup6S62C_xogJrV00UDXjQ39EBURBeWswpz9B-7RTz-EfuygKKFcciIxHambLWWCjzGAVavgljqsFcFqs5AiarfQyF7uEod6Cc2e_JuE_QAS_Iso</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Michalis, Vasileios K</creator><creator>Costandy, Joseph</creator><creator>Tsimpanogiannis, Ioannis N</creator><creator>Stubos, Athanassios K</creator><creator>Economou, Ioannis G</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-3070-3949</orcidid></search><sort><creationdate>20150128</creationdate><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><author>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>BUBBLES</topic><topic>Computer simulation</topic><topic>DISSOCIATION</topic><topic>Equilibrium conditions</topic><topic>GAS HYDRATES</topic><topic>ICE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Melt temperature</topic><topic>MELTING POINTS</topic><topic>METHANE</topic><topic>Methane hydrates</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>PHASE DIAGRAMS</topic><topic>Phase equilibria</topic><topic>PHASE STABILITY</topic><topic>PHASE STUDIES</topic><topic>Physics</topic><topic>Predictions</topic><topic>SCALE MODELS</topic><topic>SOLUBILITY</topic><topic>SUPERSATURATION</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalis, Vasileios K</creatorcontrib><creatorcontrib>Costandy, Joseph</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N</creatorcontrib><creatorcontrib>Stubos, Athanassios K</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalis, Vasileios K</au><au>Costandy, Joseph</au><au>Tsimpanogiannis, Ioannis N</au><au>Stubos, Athanassios K</au><au>Economou, Ioannis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-01-28</date><risdate>2015</risdate><volume>142</volume><issue>4</issue><spage>044501</spage><epage>044501</epage><pages>044501-044501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25637989</pmid><doi>10.1063/1.4905572</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-3070-3949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-01, Vol.142 (4), p.044501-044501 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22416051 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Accuracy BUBBLES Computer simulation DISSOCIATION Equilibrium conditions GAS HYDRATES ICE INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Melt temperature MELTING POINTS METHANE Methane hydrates Molecular dynamics MOLECULAR DYNAMICS METHOD PHASE DIAGRAMS Phase equilibria PHASE STABILITY PHASE STUDIES Physics Predictions SCALE MODELS SOLUBILITY SUPERSATURATION WATER |
title | Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20phase%20equilibria%20of%20methane%20hydrates%20using%20the%20direct%20phase%20coexistence%20methodology&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Michalis,%20Vasileios%20K&rft.date=2015-01-28&rft.volume=142&rft.issue=4&rft.spage=044501&rft.epage=044501&rft.pages=044501-044501&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4905572&rft_dat=%3Cproquest_osti_%3E2124941902%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124941902&rft_id=info:pmid/25637989&rfr_iscdi=true |