Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-01, Vol.142 (4), p.044501-044501
Hauptverfasser: Michalis, Vasileios K, Costandy, Joseph, Tsimpanogiannis, Ioannis N, Stubos, Athanassios K, Economou, Ioannis G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044501
container_issue 4
container_start_page 044501
container_title The Journal of chemical physics
container_volume 142
creator Michalis, Vasileios K
Costandy, Joseph
Tsimpanogiannis, Ioannis N
Stubos, Athanassios K
Economou, Ioannis G
description The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.
doi_str_mv 10.1063/1.4905572
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22416051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124941902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</originalsourceid><addsrcrecordid>eNpFkUtLxDAUhYMozvhY-Aek4EYXHfNq2ixl8AUDutB1SNMbG-k0Y5KC8-_tOOO4unD4zuEeDkIXBM8IFuyWzLjERVHSAzQluJJ5KSQ-RFOMKcmlwGKCTmL8xBiTkvJjNKGFYKWs5BTBa4DGmeR8n3mbpRayVasjZPA1uM7VwemNvoTU6h6ydt0EnSBmQ3T9xy_euAAm7VzGw7eLCXoDvx7f-M5_rM_QkdVdhPPdPUXvD_dv86d88fL4PL9b5IZzmnLB64YVBatZXRNhNbXWcM2sqGhTN4CltRXIGojAUupSGwJCU1FYVgGxVLBTdLXN9TE5FY1LYFrj-378UFHKR2NBRup6S62C_xogJrV00UDXjQ39EBURBeWswpz9B-7RTz-EfuygKKFcciIxHambLWWCjzGAVavgljqsFcFqs5AiarfQyF7uEod6Cc2e_JuE_QAS_Iso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124941902</pqid></control><display><type>article</type><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</creator><creatorcontrib>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</creatorcontrib><description>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4905572</identifier><identifier>PMID: 25637989</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; BUBBLES ; Computer simulation ; DISSOCIATION ; Equilibrium conditions ; GAS HYDRATES ; ICE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Melt temperature ; MELTING POINTS ; METHANE ; Methane hydrates ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; PHASE DIAGRAMS ; Phase equilibria ; PHASE STABILITY ; PHASE STUDIES ; Physics ; Predictions ; SCALE MODELS ; SOLUBILITY ; SUPERSATURATION ; WATER</subject><ispartof>The Journal of chemical physics, 2015-01, Vol.142 (4), p.044501-044501</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</citedby><cites>FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</cites><orcidid>0000-0002-2409-6831 ; 0000-0003-3070-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25637989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22416051$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalis, Vasileios K</creatorcontrib><creatorcontrib>Costandy, Joseph</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N</creatorcontrib><creatorcontrib>Stubos, Athanassios K</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</description><subject>Accuracy</subject><subject>BUBBLES</subject><subject>Computer simulation</subject><subject>DISSOCIATION</subject><subject>Equilibrium conditions</subject><subject>GAS HYDRATES</subject><subject>ICE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Melt temperature</subject><subject>MELTING POINTS</subject><subject>METHANE</subject><subject>Methane hydrates</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>PHASE DIAGRAMS</subject><subject>Phase equilibria</subject><subject>PHASE STABILITY</subject><subject>PHASE STUDIES</subject><subject>Physics</subject><subject>Predictions</subject><subject>SCALE MODELS</subject><subject>SOLUBILITY</subject><subject>SUPERSATURATION</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAUhYMozvhY-Aek4EYXHfNq2ixl8AUDutB1SNMbG-k0Y5KC8-_tOOO4unD4zuEeDkIXBM8IFuyWzLjERVHSAzQluJJ5KSQ-RFOMKcmlwGKCTmL8xBiTkvJjNKGFYKWs5BTBa4DGmeR8n3mbpRayVasjZPA1uM7VwemNvoTU6h6ydt0EnSBmQ3T9xy_euAAm7VzGw7eLCXoDvx7f-M5_rM_QkdVdhPPdPUXvD_dv86d88fL4PL9b5IZzmnLB64YVBatZXRNhNbXWcM2sqGhTN4CltRXIGojAUupSGwJCU1FYVgGxVLBTdLXN9TE5FY1LYFrj-378UFHKR2NBRup6S62C_xogJrV00UDXjQ39EBURBeWswpz9B-7RTz-EfuygKKFcciIxHambLWWCjzGAVavgljqsFcFqs5AiarfQyF7uEod6Cc2e_JuE_QAS_Iso</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Michalis, Vasileios K</creator><creator>Costandy, Joseph</creator><creator>Tsimpanogiannis, Ioannis N</creator><creator>Stubos, Athanassios K</creator><creator>Economou, Ioannis G</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-3070-3949</orcidid></search><sort><creationdate>20150128</creationdate><title>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</title><author>Michalis, Vasileios K ; Costandy, Joseph ; Tsimpanogiannis, Ioannis N ; Stubos, Athanassios K ; Economou, Ioannis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-64bd3553b3bb16fa2ffc4a3f682dbde09ff8e9be16099a7ac1e6a265f38e1f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>BUBBLES</topic><topic>Computer simulation</topic><topic>DISSOCIATION</topic><topic>Equilibrium conditions</topic><topic>GAS HYDRATES</topic><topic>ICE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Melt temperature</topic><topic>MELTING POINTS</topic><topic>METHANE</topic><topic>Methane hydrates</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>PHASE DIAGRAMS</topic><topic>Phase equilibria</topic><topic>PHASE STABILITY</topic><topic>PHASE STUDIES</topic><topic>Physics</topic><topic>Predictions</topic><topic>SCALE MODELS</topic><topic>SOLUBILITY</topic><topic>SUPERSATURATION</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalis, Vasileios K</creatorcontrib><creatorcontrib>Costandy, Joseph</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N</creatorcontrib><creatorcontrib>Stubos, Athanassios K</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalis, Vasileios K</au><au>Costandy, Joseph</au><au>Tsimpanogiannis, Ioannis N</au><au>Stubos, Athanassios K</au><au>Economou, Ioannis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-01-28</date><risdate>2015</risdate><volume>142</volume><issue>4</issue><spage>044501</spage><epage>044501</epage><pages>044501-044501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25637989</pmid><doi>10.1063/1.4905572</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2409-6831</orcidid><orcidid>https://orcid.org/0000-0003-3070-3949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-01, Vol.142 (4), p.044501-044501
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22416051
source AIP Journals Complete; Alma/SFX Local Collection
subjects Accuracy
BUBBLES
Computer simulation
DISSOCIATION
Equilibrium conditions
GAS HYDRATES
ICE
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Melt temperature
MELTING POINTS
METHANE
Methane hydrates
Molecular dynamics
MOLECULAR DYNAMICS METHOD
PHASE DIAGRAMS
Phase equilibria
PHASE STABILITY
PHASE STUDIES
Physics
Predictions
SCALE MODELS
SOLUBILITY
SUPERSATURATION
WATER
title Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20phase%20equilibria%20of%20methane%20hydrates%20using%20the%20direct%20phase%20coexistence%20methodology&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Michalis,%20Vasileios%20K&rft.date=2015-01-28&rft.volume=142&rft.issue=4&rft.spage=044501&rft.epage=044501&rft.pages=044501-044501&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4905572&rft_dat=%3Cproquest_osti_%3E2124941902%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124941902&rft_id=info:pmid/25637989&rfr_iscdi=true