Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacki...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-06, Vol.142 (23), p.234901-234901 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234901 |
---|---|
container_issue | 23 |
container_start_page | 234901 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Snodin, Benedict E K Randisi, Ferdinando Mosayebi, Majid Šulc, Petr Schreck, John S Romano, Flavio Ouldridge, Thomas E Tsukanov, Roman Nir, Eyal Louis, Ard A Doye, Jonathan P K |
description | We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA. |
doi_str_mv | 10.1063/1.4921957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690652525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-4a97ac222865e5f47328e8a0864f4e2f88b380299219a4876a66e040c544d08b3</originalsourceid><addsrcrecordid>eNpFkV9LHTEQxUOp1KvtQ79ACfRFH1Yn2Wz-PIq2Kkj7Yp9DzM7ayG5ym2SFfvtG7q0yDwMzvzlw5hDymcEZA9mfszNhODODekc2DLTplDTwnmwAOOuMBHlIjkp5AgCmuPhADrkE0w-q3xB3G2tO4-pDfKRh2eb0jCMtNa--rtnNtE22mGvAQl1sGzdXOuIW44jRIw2xJuqoTy4X7B6zC7HdL2nEmaaJXv24-EgOJjcX_LTvx-TX92_3lzfd3c_r28uLu873StZOOKOc55xrOeAwCdVzjdqBlmISyCetH3oN3LwYdUIr6aREEOAHIUZoy2PydaebSg22-FDR__YpRvTVci7YYAxr1MmOar7-rFiqXULxOM8uYlqLZe1zcuCt3gRf0ae05tg8WM64UJKLXjfqdEf5nErJONltDovLfy0D-5KOZXafTmO_7BXXhwXHV_J_HP0_SGqHCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124762438</pqid></control><display><type>article</type><title>Introducing improved structural properties and salt dependence into a coarse-grained model of DNA</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Snodin, Benedict E K ; Randisi, Ferdinando ; Mosayebi, Majid ; Šulc, Petr ; Schreck, John S ; Romano, Flavio ; Ouldridge, Thomas E ; Tsukanov, Roman ; Nir, Eyal ; Louis, Ard A ; Doye, Jonathan P K</creator><creatorcontrib>Snodin, Benedict E K ; Randisi, Ferdinando ; Mosayebi, Majid ; Šulc, Petr ; Schreck, John S ; Romano, Flavio ; Ouldridge, Thomas E ; Tsukanov, Roman ; Nir, Eyal ; Louis, Ard A ; Doye, Jonathan P K</creatorcontrib><description>We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4921957</identifier><identifier>PMID: 26093573</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ADENINES ; Backbone ; Computer simulation ; COMPUTERIZED SIMULATION ; CONCENTRATION RATIO ; Deoxyribonucleic acid ; Dependence ; DNA ; DNA - chemistry ; Elasticity ; FLEXIBILITY ; Fluorescence Resonance Energy Transfer ; Grooves ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Mechanical properties ; Models, Genetic ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Physics ; POTENTIALS ; SALTS ; Salts - chemistry ; SODIUM IONS ; Static Electricity ; Thermodynamics ; THYMINE ; Transition Temperature</subject><ispartof>The Journal of chemical physics, 2015-06, Vol.142 (23), p.234901-234901</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-4a97ac222865e5f47328e8a0864f4e2f88b380299219a4876a66e040c544d08b3</citedby><cites>FETCH-LOGICAL-c376t-4a97ac222865e5f47328e8a0864f4e2f88b380299219a4876a66e040c544d08b3</cites><orcidid>0000-0002-2226-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26093573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Snodin, Benedict E K</creatorcontrib><creatorcontrib>Randisi, Ferdinando</creatorcontrib><creatorcontrib>Mosayebi, Majid</creatorcontrib><creatorcontrib>Šulc, Petr</creatorcontrib><creatorcontrib>Schreck, John S</creatorcontrib><creatorcontrib>Romano, Flavio</creatorcontrib><creatorcontrib>Ouldridge, Thomas E</creatorcontrib><creatorcontrib>Tsukanov, Roman</creatorcontrib><creatorcontrib>Nir, Eyal</creatorcontrib><creatorcontrib>Louis, Ard A</creatorcontrib><creatorcontrib>Doye, Jonathan P K</creatorcontrib><title>Introducing improved structural properties and salt dependence into a coarse-grained model of DNA</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.</description><subject>ADENINES</subject><subject>Backbone</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONCENTRATION RATIO</subject><subject>Deoxyribonucleic acid</subject><subject>Dependence</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Elasticity</subject><subject>FLEXIBILITY</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Grooves</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Mechanical properties</subject><subject>Models, Genetic</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>SALTS</subject><subject>Salts - chemistry</subject><subject>SODIUM IONS</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>THYMINE</subject><subject>Transition Temperature</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkV9LHTEQxUOp1KvtQ79ACfRFH1Yn2Wz-PIq2Kkj7Yp9DzM7ayG5ym2SFfvtG7q0yDwMzvzlw5hDymcEZA9mfszNhODODekc2DLTplDTwnmwAOOuMBHlIjkp5AgCmuPhADrkE0w-q3xB3G2tO4-pDfKRh2eb0jCMtNa--rtnNtE22mGvAQl1sGzdXOuIW44jRIw2xJuqoTy4X7B6zC7HdL2nEmaaJXv24-EgOJjcX_LTvx-TX92_3lzfd3c_r28uLu873StZOOKOc55xrOeAwCdVzjdqBlmISyCetH3oN3LwYdUIr6aREEOAHIUZoy2PydaebSg22-FDR__YpRvTVci7YYAxr1MmOar7-rFiqXULxOM8uYlqLZe1zcuCt3gRf0ae05tg8WM64UJKLXjfqdEf5nErJONltDovLfy0D-5KOZXafTmO_7BXXhwXHV_J_HP0_SGqHCQ</recordid><startdate>20150621</startdate><enddate>20150621</enddate><creator>Snodin, Benedict E K</creator><creator>Randisi, Ferdinando</creator><creator>Mosayebi, Majid</creator><creator>Šulc, Petr</creator><creator>Schreck, John S</creator><creator>Romano, Flavio</creator><creator>Ouldridge, Thomas E</creator><creator>Tsukanov, Roman</creator><creator>Nir, Eyal</creator><creator>Louis, Ard A</creator><creator>Doye, Jonathan P K</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid></search><sort><creationdate>20150621</creationdate><title>Introducing improved structural properties and salt dependence into a coarse-grained model of DNA</title><author>Snodin, Benedict E K ; Randisi, Ferdinando ; Mosayebi, Majid ; Šulc, Petr ; Schreck, John S ; Romano, Flavio ; Ouldridge, Thomas E ; Tsukanov, Roman ; Nir, Eyal ; Louis, Ard A ; Doye, Jonathan P K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-4a97ac222865e5f47328e8a0864f4e2f88b380299219a4876a66e040c544d08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ADENINES</topic><topic>Backbone</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONCENTRATION RATIO</topic><topic>Deoxyribonucleic acid</topic><topic>Dependence</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Elasticity</topic><topic>FLEXIBILITY</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Grooves</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Mechanical properties</topic><topic>Models, Genetic</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>SALTS</topic><topic>Salts - chemistry</topic><topic>SODIUM IONS</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>THYMINE</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snodin, Benedict E K</creatorcontrib><creatorcontrib>Randisi, Ferdinando</creatorcontrib><creatorcontrib>Mosayebi, Majid</creatorcontrib><creatorcontrib>Šulc, Petr</creatorcontrib><creatorcontrib>Schreck, John S</creatorcontrib><creatorcontrib>Romano, Flavio</creatorcontrib><creatorcontrib>Ouldridge, Thomas E</creatorcontrib><creatorcontrib>Tsukanov, Roman</creatorcontrib><creatorcontrib>Nir, Eyal</creatorcontrib><creatorcontrib>Louis, Ard A</creatorcontrib><creatorcontrib>Doye, Jonathan P K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snodin, Benedict E K</au><au>Randisi, Ferdinando</au><au>Mosayebi, Majid</au><au>Šulc, Petr</au><au>Schreck, John S</au><au>Romano, Flavio</au><au>Ouldridge, Thomas E</au><au>Tsukanov, Roman</au><au>Nir, Eyal</au><au>Louis, Ard A</au><au>Doye, Jonathan P K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing improved structural properties and salt dependence into a coarse-grained model of DNA</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-06-21</date><risdate>2015</risdate><volume>142</volume><issue>23</issue><spage>234901</spage><epage>234901</epage><pages>234901-234901</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26093573</pmid><doi>10.1063/1.4921957</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2226-9524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-06, Vol.142 (23), p.234901-234901 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22415991 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | ADENINES Backbone Computer simulation COMPUTERIZED SIMULATION CONCENTRATION RATIO Deoxyribonucleic acid Dependence DNA DNA - chemistry Elasticity FLEXIBILITY Fluorescence Resonance Energy Transfer Grooves INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Mechanical properties Models, Genetic Molecular Dynamics Simulation Nucleic Acid Conformation Physics POTENTIALS SALTS Salts - chemistry SODIUM IONS Static Electricity Thermodynamics THYMINE Transition Temperature |
title | Introducing improved structural properties and salt dependence into a coarse-grained model of DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20improved%20structural%20properties%20and%20salt%20dependence%20into%20a%20coarse-grained%20model%20of%20DNA&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Snodin,%20Benedict%20E%20K&rft.date=2015-06-21&rft.volume=142&rft.issue=23&rft.spage=234901&rft.epage=234901&rft.pages=234901-234901&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4921957&rft_dat=%3Cproquest_osti_%3E1690652525%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124762438&rft_id=info:pmid/26093573&rfr_iscdi=true |