Simulated evolution of fluorophores for light emitting diodes
Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-03, Vol.142 (10), p.104104-104104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G(∗∗)). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10(6) molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4914294 |