Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time reso...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-11, Vol.141 (19), p.194303-194303 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194303 |
---|---|
container_issue | 19 |
container_start_page | 194303 |
container_title | The Journal of chemical physics |
container_volume | 141 |
creator | Den, Takuya S Frey, Hans-Martin Leutwyler, Samuel |
description | The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s. |
doi_str_mv | 10.1063/1.4901284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627953047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</originalsourceid><addsrcrecordid>eNpNkctuFDEQRS0EIkNgwQ8gS2xg0cF2u_1YRhEvKRISgrVVdpeZjnrsoe2WMnwHH4yTGQIb1-bUUfleQl5ydsGZ6t_xC2kZF0Y-IhvOjO20suwx2TAmeGcVU2fkWSk3jDGuhXxKzsQguTJGb8jvyxDWBSrSJVeoU04w05BTqZAqhTRSn9szY_pRt4XmSLd4C3Fe85I9pl-YkPoDjbiruWC4Y_8TfYUdpKbb4oIpIC17DHXJJeT94V4Onk5pajQNMId1vl8sz8mTCHPBF6d5Tr5_eP_t6lN3_eXj56vL6y70ktcOei-NsdwOxmrjcbA-aoGMQ2ipWCFgDGDHPkLUMfoQJB_BKqN6DsYPtj8nr4_eXOrkSpgqhm37Q2pXOiEkH3qtG_XmSO2X_HPFUt1uKgHnGRLmtTiuhLZDz6T-J3xAb_K6tCSKE1yogUurVKPeHqnQoigLRrdfph0sB8eZuyvUcXcqtLGvTsbV73B8IP822P8BfyCdNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126514966</pqid></control><display><type>article</type><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</creator><creatorcontrib>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</creatorcontrib><description>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4901284</identifier><identifier>PMID: 25416887</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>BOND LENGTHS ; ELECTRON DIFFRACTION ; ELECTRONS ; EXCITED STATES ; FREQUENCY MIXING ; GROUND STATES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MHZ RANGE ; MOLECULES ; ORGANIC FLUORINE COMPOUNDS ; PULSES ; Rotational spectra ; SPECTROSCOPY ; TIME RESOLUTION</subject><ispartof>The Journal of chemical physics, 2014-11, Vol.141 (19), p.194303-194303</ispartof><rights>Copyright American Institute of Physics Nov 21, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</citedby><cites>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</cites><orcidid>0000-0003-1595-6104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25416887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Den, Takuya S</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</description><subject>BOND LENGTHS</subject><subject>ELECTRON DIFFRACTION</subject><subject>ELECTRONS</subject><subject>EXCITED STATES</subject><subject>FREQUENCY MIXING</subject><subject>GROUND STATES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MHZ RANGE</subject><subject>MOLECULES</subject><subject>ORGANIC FLUORINE COMPOUNDS</subject><subject>PULSES</subject><subject>Rotational spectra</subject><subject>SPECTROSCOPY</subject><subject>TIME RESOLUTION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkctuFDEQRS0EIkNgwQ8gS2xg0cF2u_1YRhEvKRISgrVVdpeZjnrsoe2WMnwHH4yTGQIb1-bUUfleQl5ydsGZ6t_xC2kZF0Y-IhvOjO20suwx2TAmeGcVU2fkWSk3jDGuhXxKzsQguTJGb8jvyxDWBSrSJVeoU04w05BTqZAqhTRSn9szY_pRt4XmSLd4C3Fe85I9pl-YkPoDjbiruWC4Y_8TfYUdpKbb4oIpIC17DHXJJeT94V4Onk5pajQNMId1vl8sz8mTCHPBF6d5Tr5_eP_t6lN3_eXj56vL6y70ktcOei-NsdwOxmrjcbA-aoGMQ2ipWCFgDGDHPkLUMfoQJB_BKqN6DsYPtj8nr4_eXOrkSpgqhm37Q2pXOiEkH3qtG_XmSO2X_HPFUt1uKgHnGRLmtTiuhLZDz6T-J3xAb_K6tCSKE1yogUurVKPeHqnQoigLRrdfph0sB8eZuyvUcXcqtLGvTsbV73B8IP822P8BfyCdNg</recordid><startdate>20141121</startdate><enddate>20141121</enddate><creator>Den, Takuya S</creator><creator>Frey, Hans-Martin</creator><creator>Leutwyler, Samuel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid></search><sort><creationdate>20141121</creationdate><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><author>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BOND LENGTHS</topic><topic>ELECTRON DIFFRACTION</topic><topic>ELECTRONS</topic><topic>EXCITED STATES</topic><topic>FREQUENCY MIXING</topic><topic>GROUND STATES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MHZ RANGE</topic><topic>MOLECULES</topic><topic>ORGANIC FLUORINE COMPOUNDS</topic><topic>PULSES</topic><topic>Rotational spectra</topic><topic>SPECTROSCOPY</topic><topic>TIME RESOLUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Den, Takuya S</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Den, Takuya S</au><au>Frey, Hans-Martin</au><au>Leutwyler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-11-21</date><risdate>2014</risdate><volume>141</volume><issue>19</issue><spage>194303</spage><epage>194303</epage><pages>194303-194303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25416887</pmid><doi>10.1063/1.4901284</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-11, Vol.141 (19), p.194303-194303 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22415377 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | BOND LENGTHS ELECTRON DIFFRACTION ELECTRONS EXCITED STATES FREQUENCY MIXING GROUND STATES INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MHZ RANGE MOLECULES ORGANIC FLUORINE COMPOUNDS PULSES Rotational spectra SPECTROSCOPY TIME RESOLUTION |
title | Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20rotational%20constant%20and%20bond%20lengths%20of%20hexafluorobenzene%20by%20femtosecond%20rotational%20Raman%20coherence%20spectroscopy%20and%20ab%20initio%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Den,%20Takuya%20S&rft.date=2014-11-21&rft.volume=141&rft.issue=19&rft.spage=194303&rft.epage=194303&rft.pages=194303-194303&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4901284&rft_dat=%3Cproquest_osti_%3E1627953047%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126514966&rft_id=info:pmid/25416887&rfr_iscdi=true |