Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-11, Vol.141 (19), p.194303-194303
Hauptverfasser: Den, Takuya S, Frey, Hans-Martin, Leutwyler, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194303
container_issue 19
container_start_page 194303
container_title The Journal of chemical physics
container_volume 141
creator Den, Takuya S
Frey, Hans-Martin
Leutwyler, Samuel
description The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.
doi_str_mv 10.1063/1.4901284
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627953047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</originalsourceid><addsrcrecordid>eNpNkctuFDEQRS0EIkNgwQ8gS2xg0cF2u_1YRhEvKRISgrVVdpeZjnrsoe2WMnwHH4yTGQIb1-bUUfleQl5ydsGZ6t_xC2kZF0Y-IhvOjO20suwx2TAmeGcVU2fkWSk3jDGuhXxKzsQguTJGb8jvyxDWBSrSJVeoU04w05BTqZAqhTRSn9szY_pRt4XmSLd4C3Fe85I9pl-YkPoDjbiruWC4Y_8TfYUdpKbb4oIpIC17DHXJJeT94V4Onk5pajQNMId1vl8sz8mTCHPBF6d5Tr5_eP_t6lN3_eXj56vL6y70ktcOei-NsdwOxmrjcbA-aoGMQ2ipWCFgDGDHPkLUMfoQJB_BKqN6DsYPtj8nr4_eXOrkSpgqhm37Q2pXOiEkH3qtG_XmSO2X_HPFUt1uKgHnGRLmtTiuhLZDz6T-J3xAb_K6tCSKE1yogUurVKPeHqnQoigLRrdfph0sB8eZuyvUcXcqtLGvTsbV73B8IP822P8BfyCdNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126514966</pqid></control><display><type>article</type><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</creator><creatorcontrib>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</creatorcontrib><description>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4901284</identifier><identifier>PMID: 25416887</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>BOND LENGTHS ; ELECTRON DIFFRACTION ; ELECTRONS ; EXCITED STATES ; FREQUENCY MIXING ; GROUND STATES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MHZ RANGE ; MOLECULES ; ORGANIC FLUORINE COMPOUNDS ; PULSES ; Rotational spectra ; SPECTROSCOPY ; TIME RESOLUTION</subject><ispartof>The Journal of chemical physics, 2014-11, Vol.141 (19), p.194303-194303</ispartof><rights>Copyright American Institute of Physics Nov 21, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</citedby><cites>FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</cites><orcidid>0000-0003-1595-6104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25416887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Den, Takuya S</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</description><subject>BOND LENGTHS</subject><subject>ELECTRON DIFFRACTION</subject><subject>ELECTRONS</subject><subject>EXCITED STATES</subject><subject>FREQUENCY MIXING</subject><subject>GROUND STATES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MHZ RANGE</subject><subject>MOLECULES</subject><subject>ORGANIC FLUORINE COMPOUNDS</subject><subject>PULSES</subject><subject>Rotational spectra</subject><subject>SPECTROSCOPY</subject><subject>TIME RESOLUTION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkctuFDEQRS0EIkNgwQ8gS2xg0cF2u_1YRhEvKRISgrVVdpeZjnrsoe2WMnwHH4yTGQIb1-bUUfleQl5ydsGZ6t_xC2kZF0Y-IhvOjO20suwx2TAmeGcVU2fkWSk3jDGuhXxKzsQguTJGb8jvyxDWBSrSJVeoU04w05BTqZAqhTRSn9szY_pRt4XmSLd4C3Fe85I9pl-YkPoDjbiruWC4Y_8TfYUdpKbb4oIpIC17DHXJJeT94V4Onk5pajQNMId1vl8sz8mTCHPBF6d5Tr5_eP_t6lN3_eXj56vL6y70ktcOei-NsdwOxmrjcbA-aoGMQ2ipWCFgDGDHPkLUMfoQJB_BKqN6DsYPtj8nr4_eXOrkSpgqhm37Q2pXOiEkH3qtG_XmSO2X_HPFUt1uKgHnGRLmtTiuhLZDz6T-J3xAb_K6tCSKE1yogUurVKPeHqnQoigLRrdfph0sB8eZuyvUcXcqtLGvTsbV73B8IP822P8BfyCdNg</recordid><startdate>20141121</startdate><enddate>20141121</enddate><creator>Den, Takuya S</creator><creator>Frey, Hans-Martin</creator><creator>Leutwyler, Samuel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid></search><sort><creationdate>20141121</creationdate><title>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</title><author>Den, Takuya S ; Frey, Hans-Martin ; Leutwyler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a3b48891958978be59bf72e01ac063922adca9d3faf7ffbcc41da968631a8b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BOND LENGTHS</topic><topic>ELECTRON DIFFRACTION</topic><topic>ELECTRONS</topic><topic>EXCITED STATES</topic><topic>FREQUENCY MIXING</topic><topic>GROUND STATES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MHZ RANGE</topic><topic>MOLECULES</topic><topic>ORGANIC FLUORINE COMPOUNDS</topic><topic>PULSES</topic><topic>Rotational spectra</topic><topic>SPECTROSCOPY</topic><topic>TIME RESOLUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Den, Takuya S</creatorcontrib><creatorcontrib>Frey, Hans-Martin</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Den, Takuya S</au><au>Frey, Hans-Martin</au><au>Leutwyler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-11-21</date><risdate>2014</risdate><volume>141</volume><issue>19</issue><spage>194303</spage><epage>194303</epage><pages>194303-194303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25416887</pmid><doi>10.1063/1.4901284</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1595-6104</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-11, Vol.141 (19), p.194303-194303
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22415377
source AIP Journals Complete; Alma/SFX Local Collection
subjects BOND LENGTHS
ELECTRON DIFFRACTION
ELECTRONS
EXCITED STATES
FREQUENCY MIXING
GROUND STATES
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MHZ RANGE
MOLECULES
ORGANIC FLUORINE COMPOUNDS
PULSES
Rotational spectra
SPECTROSCOPY
TIME RESOLUTION
title Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20rotational%20constant%20and%20bond%20lengths%20of%20hexafluorobenzene%20by%20femtosecond%20rotational%20Raman%20coherence%20spectroscopy%20and%20ab%20initio%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Den,%20Takuya%20S&rft.date=2014-11-21&rft.volume=141&rft.issue=19&rft.spage=194303&rft.epage=194303&rft.pages=194303-194303&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4901284&rft_dat=%3Cproquest_osti_%3E1627953047%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126514966&rft_id=info:pmid/25416887&rfr_iscdi=true