Optically detected magnetic resonance imaging

Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-01, Vol.106 (3)
Hauptverfasser: Blank, Aharon, Shapiro, Guy, Fischer, Ran, London, Paz, Gershoni, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 106
creator Blank, Aharon
Shapiro, Guy
Fischer, Ran
London, Paz
Gershoni, David
description Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.
doi_str_mv 10.1063/1.4906535
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124942064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqFw4B9E4sQhZf2MfUQVL6lSL3C2HMcuqYId7PTQf4-hlTitdvRpd2YQusWwxCDoA14yBYJTfoYqDG3bUIzlOaoAgDZCcXyJrnLelZUTSivUbKZ5sGYcD3XvZmdn19dfZhtcUevkcgwmWFcPRRvC9hpdeDNmd3OaC_Tx_PS-em3Wm5e31eO6sUTyuekM-F51jgglpTKCtYYYqSQjwMEaLohnshM966kU0PmeSWeEsx4k4QxaukB3x7sxz4POdijOPm0MoRjUhDDMsWD_1JTi997lWe_iPoViTBNMmCrv_qj7I2VTzDk5r6dU4qSDxqB_O9NYnzqjP7ODW4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124942064</pqid></control><display><type>article</type><title>Optically detected magnetic resonance imaging</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</creator><creatorcontrib>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</creatorcontrib><description>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4906535</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Electron spin ; ELECTRONS ; Image acquisition ; Image detection ; Imaging techniques ; MAGNETIC FIELDS ; MAGNETIC RESONANCE ; Magnetic resonance imaging ; NMR ; NMR IMAGING ; Nuclear magnetic resonance ; Point spread functions ; PULSES ; RESOLUTION ; SPIN ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (3)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</citedby><cites>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22415164$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blank, Aharon</creatorcontrib><creatorcontrib>Shapiro, Guy</creatorcontrib><creatorcontrib>Fischer, Ran</creatorcontrib><creatorcontrib>London, Paz</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><title>Optically detected magnetic resonance imaging</title><title>Applied physics letters</title><description>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</description><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Electron spin</subject><subject>ELECTRONS</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Imaging techniques</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RESONANCE</subject><subject>Magnetic resonance imaging</subject><subject>NMR</subject><subject>NMR IMAGING</subject><subject>Nuclear magnetic resonance</subject><subject>Point spread functions</subject><subject>PULSES</subject><subject>RESOLUTION</subject><subject>SPIN</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqFw4B9E4sQhZf2MfUQVL6lSL3C2HMcuqYId7PTQf4-hlTitdvRpd2YQusWwxCDoA14yBYJTfoYqDG3bUIzlOaoAgDZCcXyJrnLelZUTSivUbKZ5sGYcD3XvZmdn19dfZhtcUevkcgwmWFcPRRvC9hpdeDNmd3OaC_Tx_PS-em3Wm5e31eO6sUTyuekM-F51jgglpTKCtYYYqSQjwMEaLohnshM966kU0PmeSWeEsx4k4QxaukB3x7sxz4POdijOPm0MoRjUhDDMsWD_1JTi997lWe_iPoViTBNMmCrv_qj7I2VTzDk5r6dU4qSDxqB_O9NYnzqjP7ODW4A</recordid><startdate>20150119</startdate><enddate>20150119</enddate><creator>Blank, Aharon</creator><creator>Shapiro, Guy</creator><creator>Fischer, Ran</creator><creator>London, Paz</creator><creator>Gershoni, David</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150119</creationdate><title>Optically detected magnetic resonance imaging</title><author>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Electron spin</topic><topic>ELECTRONS</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Imaging techniques</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RESONANCE</topic><topic>Magnetic resonance imaging</topic><topic>NMR</topic><topic>NMR IMAGING</topic><topic>Nuclear magnetic resonance</topic><topic>Point spread functions</topic><topic>PULSES</topic><topic>RESOLUTION</topic><topic>SPIN</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blank, Aharon</creatorcontrib><creatorcontrib>Shapiro, Guy</creatorcontrib><creatorcontrib>Fischer, Ran</creatorcontrib><creatorcontrib>London, Paz</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blank, Aharon</au><au>Shapiro, Guy</au><au>Fischer, Ran</au><au>London, Paz</au><au>Gershoni, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically detected magnetic resonance imaging</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-19</date><risdate>2015</risdate><volume>106</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906535</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-01, Vol.106 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22415164
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Electron spin
ELECTRONS
Image acquisition
Image detection
Imaging techniques
MAGNETIC FIELDS
MAGNETIC RESONANCE
Magnetic resonance imaging
NMR
NMR IMAGING
Nuclear magnetic resonance
Point spread functions
PULSES
RESOLUTION
SPIN
THREE-DIMENSIONAL CALCULATIONS
title Optically detected magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20detected%20magnetic%20resonance%20imaging&rft.jtitle=Applied%20physics%20letters&rft.au=Blank,%20Aharon&rft.date=2015-01-19&rft.volume=106&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4906535&rft_dat=%3Cproquest_osti_%3E2124942064%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124942064&rft_id=info:pmid/&rfr_iscdi=true