Optically detected magnetic resonance imaging
Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed ma...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-01, Vol.106 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Blank, Aharon Shapiro, Guy Fischer, Ran London, Paz Gershoni, David |
description | Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors. |
doi_str_mv | 10.1063/1.4906535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124942064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqFw4B9E4sQhZf2MfUQVL6lSL3C2HMcuqYId7PTQf4-hlTitdvRpd2YQusWwxCDoA14yBYJTfoYqDG3bUIzlOaoAgDZCcXyJrnLelZUTSivUbKZ5sGYcD3XvZmdn19dfZhtcUevkcgwmWFcPRRvC9hpdeDNmd3OaC_Tx_PS-em3Wm5e31eO6sUTyuekM-F51jgglpTKCtYYYqSQjwMEaLohnshM966kU0PmeSWeEsx4k4QxaukB3x7sxz4POdijOPm0MoRjUhDDMsWD_1JTi997lWe_iPoViTBNMmCrv_qj7I2VTzDk5r6dU4qSDxqB_O9NYnzqjP7ODW4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124942064</pqid></control><display><type>article</type><title>Optically detected magnetic resonance imaging</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</creator><creatorcontrib>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</creatorcontrib><description>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4906535</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Electron spin ; ELECTRONS ; Image acquisition ; Image detection ; Imaging techniques ; MAGNETIC FIELDS ; MAGNETIC RESONANCE ; Magnetic resonance imaging ; NMR ; NMR IMAGING ; Nuclear magnetic resonance ; Point spread functions ; PULSES ; RESOLUTION ; SPIN ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (3)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</citedby><cites>FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22415164$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blank, Aharon</creatorcontrib><creatorcontrib>Shapiro, Guy</creatorcontrib><creatorcontrib>Fischer, Ran</creatorcontrib><creatorcontrib>London, Paz</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><title>Optically detected magnetic resonance imaging</title><title>Applied physics letters</title><description>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</description><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Electron spin</subject><subject>ELECTRONS</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Imaging techniques</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RESONANCE</subject><subject>Magnetic resonance imaging</subject><subject>NMR</subject><subject>NMR IMAGING</subject><subject>Nuclear magnetic resonance</subject><subject>Point spread functions</subject><subject>PULSES</subject><subject>RESOLUTION</subject><subject>SPIN</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqFw4B9E4sQhZf2MfUQVL6lSL3C2HMcuqYId7PTQf4-hlTitdvRpd2YQusWwxCDoA14yBYJTfoYqDG3bUIzlOaoAgDZCcXyJrnLelZUTSivUbKZ5sGYcD3XvZmdn19dfZhtcUevkcgwmWFcPRRvC9hpdeDNmd3OaC_Tx_PS-em3Wm5e31eO6sUTyuekM-F51jgglpTKCtYYYqSQjwMEaLohnshM966kU0PmeSWeEsx4k4QxaukB3x7sxz4POdijOPm0MoRjUhDDMsWD_1JTi997lWe_iPoViTBNMmCrv_qj7I2VTzDk5r6dU4qSDxqB_O9NYnzqjP7ODW4A</recordid><startdate>20150119</startdate><enddate>20150119</enddate><creator>Blank, Aharon</creator><creator>Shapiro, Guy</creator><creator>Fischer, Ran</creator><creator>London, Paz</creator><creator>Gershoni, David</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150119</creationdate><title>Optically detected magnetic resonance imaging</title><author>Blank, Aharon ; Shapiro, Guy ; Fischer, Ran ; London, Paz ; Gershoni, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-ba0fd9be269889a647a2a89842050ca562f48b6d4d3860bfd48ea6ecf08254073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Electron spin</topic><topic>ELECTRONS</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Imaging techniques</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RESONANCE</topic><topic>Magnetic resonance imaging</topic><topic>NMR</topic><topic>NMR IMAGING</topic><topic>Nuclear magnetic resonance</topic><topic>Point spread functions</topic><topic>PULSES</topic><topic>RESOLUTION</topic><topic>SPIN</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blank, Aharon</creatorcontrib><creatorcontrib>Shapiro, Guy</creatorcontrib><creatorcontrib>Fischer, Ran</creatorcontrib><creatorcontrib>London, Paz</creatorcontrib><creatorcontrib>Gershoni, David</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blank, Aharon</au><au>Shapiro, Guy</au><au>Fischer, Ran</au><au>London, Paz</au><au>Gershoni, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically detected magnetic resonance imaging</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-19</date><risdate>2015</risdate><volume>106</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an "optically detected magnetic resonance imaging" technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906535</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-01, Vol.106 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22415164 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Electron spin ELECTRONS Image acquisition Image detection Imaging techniques MAGNETIC FIELDS MAGNETIC RESONANCE Magnetic resonance imaging NMR NMR IMAGING Nuclear magnetic resonance Point spread functions PULSES RESOLUTION SPIN THREE-DIMENSIONAL CALCULATIONS |
title | Optically detected magnetic resonance imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20detected%20magnetic%20resonance%20imaging&rft.jtitle=Applied%20physics%20letters&rft.au=Blank,%20Aharon&rft.date=2015-01-19&rft.volume=106&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4906535&rft_dat=%3Cproquest_osti_%3E2124942064%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124942064&rft_id=info:pmid/&rfr_iscdi=true |