Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam
Purpose: IAEA TRS‐398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS‐398 recom...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2015-07, Vol.42 (7), p.3892-3895 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3895 |
---|---|
container_issue | 7 |
container_start_page | 3892 |
container_title | Medical physics (Lancaster) |
container_volume | 42 |
creator | Sugama, Yuya Nishio, Teiji Onishi, Hiroshi |
description | Purpose:
IAEA TRS‐398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS‐398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies.
Methods:
In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg‐peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane‐parallel ionization chamber (PTW 34045).
Results:
The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source.
Conclusions:
The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS‐398 and the analytical results. |
doi_str_mv | 10.1118/1.4921617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22413608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1693730290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-991a3951e739cf67062fbf4065f2757c950ece2a99edf96f6b4809d6b05840fa3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCgT-ALHGBQ8r4I86aG6pKQSofh3K2HGesNUrsJfZSln_BP8a7WbhxsjR-5tHMvIQ8Y3DJGFu_ZpdSc6ZY94CsuOxEIznoh2QFoGXDJbRn5DznbwCgRAuPyRlXTIhWw4r8vkO3icHZkX5KBd_Q659bnMOEsdTSgAXnKURbQoo0eVo2SNF7dCX8QLpNIZZDeUKbdzMeuo7UfaJuP4Y4zEdzbQ6_Fofb2KnHOdMQqaWuMkdiO6dSf3u00xPyyNsx49PTe0G-vru-u3rf3H6--XD19rZxsuVdozWzQrcMO6GdVx0o7nsvQbWed23ndAvokFutcfBaedXLNehB9dCuJXgrLsiLxZtyCSa7UOolXIqxLmc4l0woWFfq5ULVCb_vMBczhexwHG3EtMuGKS06AVxDRV8tqJtTzjN6s62HtPPeMDCHnAwzp5wq-_yk3fUTDv_Iv8FUoFmA-zDi_v8m8_HLUfgHvC6b4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693730290</pqid></control><display><type>article</type><title>Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Sugama, Yuya ; Nishio, Teiji ; Onishi, Hiroshi</creator><creatorcontrib>Sugama, Yuya ; Nishio, Teiji ; Onishi, Hiroshi</creatorcontrib><description>Purpose:
IAEA TRS‐398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS‐398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies.
Methods:
In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg‐peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane‐parallel ionization chamber (PTW 34045).
Results:
The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source.
Conclusions:
The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS‐398 and the analytical results.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4921617</identifier><identifier>PMID: 26133590</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>07 ISOTOPES AND RADIATION SOURCES ; 60 APPLIED LIFE SCIENCES ; BRAGG CURVE ; Carbon ; COMPARATIVE EVALUATIONS ; CYLINDRICAL CONFIGURATION ; displacement measurement ; Dose‐volume analysis ; dosimetry ; effective point of measurement ; Error analysis ; Experiment design ; Heavy ion beams ; HEAVY IONS ; Ion beam sources ; ionisation chambers ; ionization chamber ; IONIZATION CHAMBERS ; Ionizing radiation ; Measurement of nuclear or x‐radiation ; Models, Theoretical ; PHANTOMS ; Phantoms, Imaging ; Polyethylene ; PROTON BEAMS ; PROTON DOSIMETRY ; proton therapy ; Proton Therapy - instrumentation ; Protons ; radiation dosimetry ; radiation therapy ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Scintigraphy ; Treatment planning ; Tubes for determining the presence, intensity, density or energy of radiation or particles ; Water ; with scintillation detectors</subject><ispartof>Medical physics (Lancaster), 2015-07, Vol.42 (7), p.3892-3895</ispartof><rights>2015 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4527-991a3951e739cf67062fbf4065f2757c950ece2a99edf96f6b4809d6b05840fa3</citedby><cites>FETCH-LOGICAL-c4527-991a3951e739cf67062fbf4065f2757c950ece2a99edf96f6b4809d6b05840fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4921617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4921617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26133590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22413608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugama, Yuya</creatorcontrib><creatorcontrib>Nishio, Teiji</creatorcontrib><creatorcontrib>Onishi, Hiroshi</creatorcontrib><title>Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose:
IAEA TRS‐398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS‐398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies.
Methods:
In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg‐peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane‐parallel ionization chamber (PTW 34045).
Results:
The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source.
Conclusions:
The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS‐398 and the analytical results.</description><subject>07 ISOTOPES AND RADIATION SOURCES</subject><subject>60 APPLIED LIFE SCIENCES</subject><subject>BRAGG CURVE</subject><subject>Carbon</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CYLINDRICAL CONFIGURATION</subject><subject>displacement measurement</subject><subject>Dose‐volume analysis</subject><subject>dosimetry</subject><subject>effective point of measurement</subject><subject>Error analysis</subject><subject>Experiment design</subject><subject>Heavy ion beams</subject><subject>HEAVY IONS</subject><subject>Ion beam sources</subject><subject>ionisation chambers</subject><subject>ionization chamber</subject><subject>IONIZATION CHAMBERS</subject><subject>Ionizing radiation</subject><subject>Measurement of nuclear or x‐radiation</subject><subject>Models, Theoretical</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>Polyethylene</subject><subject>PROTON BEAMS</subject><subject>PROTON DOSIMETRY</subject><subject>proton therapy</subject><subject>Proton Therapy - instrumentation</subject><subject>Protons</subject><subject>radiation dosimetry</subject><subject>radiation therapy</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Scintigraphy</subject><subject>Treatment planning</subject><subject>Tubes for determining the presence, intensity, density or energy of radiation or particles</subject><subject>Water</subject><subject>with scintillation detectors</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EotvCgT-ALHGBQ8r4I86aG6pKQSofh3K2HGesNUrsJfZSln_BP8a7WbhxsjR-5tHMvIQ8Y3DJGFu_ZpdSc6ZY94CsuOxEIznoh2QFoGXDJbRn5DznbwCgRAuPyRlXTIhWw4r8vkO3icHZkX5KBd_Q659bnMOEsdTSgAXnKURbQoo0eVo2SNF7dCX8QLpNIZZDeUKbdzMeuo7UfaJuP4Y4zEdzbQ6_Fofb2KnHOdMQqaWuMkdiO6dSf3u00xPyyNsx49PTe0G-vru-u3rf3H6--XD19rZxsuVdozWzQrcMO6GdVx0o7nsvQbWed23ndAvokFutcfBaedXLNehB9dCuJXgrLsiLxZtyCSa7UOolXIqxLmc4l0woWFfq5ULVCb_vMBczhexwHG3EtMuGKS06AVxDRV8tqJtTzjN6s62HtPPeMDCHnAwzp5wq-_yk3fUTDv_Iv8FUoFmA-zDi_v8m8_HLUfgHvC6b4Q</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Sugama, Yuya</creator><creator>Nishio, Teiji</creator><creator>Onishi, Hiroshi</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201507</creationdate><title>Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam</title><author>Sugama, Yuya ; Nishio, Teiji ; Onishi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-991a3951e739cf67062fbf4065f2757c950ece2a99edf96f6b4809d6b05840fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>07 ISOTOPES AND RADIATION SOURCES</topic><topic>60 APPLIED LIFE SCIENCES</topic><topic>BRAGG CURVE</topic><topic>Carbon</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CYLINDRICAL CONFIGURATION</topic><topic>displacement measurement</topic><topic>Dose‐volume analysis</topic><topic>dosimetry</topic><topic>effective point of measurement</topic><topic>Error analysis</topic><topic>Experiment design</topic><topic>Heavy ion beams</topic><topic>HEAVY IONS</topic><topic>Ion beam sources</topic><topic>ionisation chambers</topic><topic>ionization chamber</topic><topic>IONIZATION CHAMBERS</topic><topic>Ionizing radiation</topic><topic>Measurement of nuclear or x‐radiation</topic><topic>Models, Theoretical</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>Polyethylene</topic><topic>PROTON BEAMS</topic><topic>PROTON DOSIMETRY</topic><topic>proton therapy</topic><topic>Proton Therapy - instrumentation</topic><topic>Protons</topic><topic>radiation dosimetry</topic><topic>radiation therapy</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Scintigraphy</topic><topic>Treatment planning</topic><topic>Tubes for determining the presence, intensity, density or energy of radiation or particles</topic><topic>Water</topic><topic>with scintillation detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugama, Yuya</creatorcontrib><creatorcontrib>Nishio, Teiji</creatorcontrib><creatorcontrib>Onishi, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugama, Yuya</au><au>Nishio, Teiji</au><au>Onishi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2015-07</date><risdate>2015</risdate><volume>42</volume><issue>7</issue><spage>3892</spage><epage>3895</epage><pages>3892-3895</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose:
IAEA TRS‐398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS‐398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies.
Methods:
In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg‐peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane‐parallel ionization chamber (PTW 34045).
Results:
The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source.
Conclusions:
The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS‐398 and the analytical results.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>26133590</pmid><doi>10.1118/1.4921617</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2015-07, Vol.42 (7), p.3892-3895 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_22413608 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 07 ISOTOPES AND RADIATION SOURCES 60 APPLIED LIFE SCIENCES BRAGG CURVE Carbon COMPARATIVE EVALUATIONS CYLINDRICAL CONFIGURATION displacement measurement Dose‐volume analysis dosimetry effective point of measurement Error analysis Experiment design Heavy ion beams HEAVY IONS Ion beam sources ionisation chambers ionization chamber IONIZATION CHAMBERS Ionizing radiation Measurement of nuclear or x‐radiation Models, Theoretical PHANTOMS Phantoms, Imaging Polyethylene PROTON BEAMS PROTON DOSIMETRY proton therapy Proton Therapy - instrumentation Protons radiation dosimetry radiation therapy Radiometry - methods RADIOTHERAPY Radiotherapy Dosage Scintigraphy Treatment planning Tubes for determining the presence, intensity, density or energy of radiation or particles Water with scintillation detectors |
title | Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20Note:%20Experimental%20determination%20of%20the%20effective%20point%20of%20measurement%20of%20two%20cylindrical%20ionization%20chambers%20in%20a%20clinical%20proton%20beam&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Sugama,%20Yuya&rft.date=2015-07&rft.volume=42&rft.issue=7&rft.spage=3892&rft.epage=3895&rft.pages=3892-3895&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1118/1.4921617&rft_dat=%3Cproquest_osti_%3E1693730290%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693730290&rft_id=info:pmid/26133590&rfr_iscdi=true |